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Abstract

The biosynthesis of leukotrienes (LTs) is initiated by the transfor-
mation of free arachidonic acid to LTA, by 5-lipoxygenase (5-LO).
Subsequent enzymatic conversion of LTA, yields LTB, and the cy-
steinyl-LTs C4, D4 and E,. LTs have prominent functions in patho-
physiology and are connected to numerous disorders including
bronchial asthma, allergic rhinitis, inflammatory bowel and skin
diseases, rheumatoid arthritis, cancer, osteoporosis and cardiovas-
cular diseases. Pharmacological and genetic interruption of the 5-
LO pathway or blockade of LT receptors, serving as means for inter-
vention with LTs, may be of therapeutic value for certain related
disorders. Natural or plant-derived substances were among the
first 5-LO inhibitors identified in the early 1980 s. To date, a huge
number of diverse plant-derived compounds have been reported
to interfere with 5-LO product synthesis. However, many investi-
gations have addressed the efficacy of a given compound solely in
cellular test systems and analysis of direct interference with 5-LO
has been neglected. In the first part of this review, the biology and
molecular pharmacology of the 5-LO pathway is summarized in
order to understand its overall regulation and complexity as well
as to comprehend the possible points of attack of compounds that
eventually lead to inhibition of 5-LO product formation in intact
cells. In the second part, natural compounds that interfere with
5-LO product formation are compiled and grouped into structural
classes, and the underlying molecular mechanisms and structure-
activity relationships are discussed.
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The Leukotriene Synthetic Pathway

Leukotrienes (LTs) are bioactive lipid mediators mainly produced
and released from activated leukocytes [1]. The initial step in LT
biosynthesis is the dioxygenation of free arachidonic acid (AA) by
5-lipopxygenase (5-L0), yielding 5(S)-hydroperoxyeicosatetrae-
noic acid (5-HPETE) that is further metabolized by 5-LO to the in-
stable epoxide LTA, (Fig.1, for review see [2]). In neutrophils and
monocytes, LTA, can be converted to LTB, by LTA, hydrolase,
whereas in mast cells and eosinophils, LTC, synthase or mem-
brane-associated proteins in eicosanoid and glutathione metab-
olism (MAPEGs) can conjugate LTA, with glutathione (GSH),
yielding the cysteinyl-LT (Cys-LT)C, that can be cleaved in the
extracellular environment yielding LTD, and then LTE, (Fig.1).
Alternatively, de novo synthesized LTA, can be transferred to
neighbouring cells that are unable to produce LTA, itself but ex-
press LTA, hydrolase or LTC, synthase/MAPEGs (e.g., parenchy-
mal cells or erythrocytes), allowing subsequent generation of
LTB, or LTC,, respectively [3]. Finally, when 5-LO and 12-LO or
15-LO act together, lipoxins (LXs) might be formed, that are
bioactive trihydroxytetraene-containing lipid mediators func-
tioning as stop signals for inflammatory responses [4].

Biological Effects of Leukotrienes

LTB, is a potent chemoattractant for leukocytes causing adher-
ence of phagocytes to vessel walls, neutrophil degranulation
and release of superoxide anions, whereas cysLTs are potent
bronchoconstrictors increasing vascular permeability and stim-
ulating mucus secretion from airways [5]. These biological ac-
tions of LTs are mediated by specific G protein-coupled receptors
(GPCRs) on the surface of their target cells. The CysLTs bind to
CysLT1 and CysLT2 receptors that signal via Gq proteins (for re-
view, see [6]). For the CysLT1 receptor the agonist potency is
LTD, >> LTC, > LTE,4, whereas LTC, and LTD, exhibit similar poten-

mﬂ/OOH Arachidonic acid

5-Lipoxygenase
(oxygenase) + O

H _OOH

moH 5-HPETE

. \ H, OH
5-Lipoxygenase — e COOH
(LTA, synthase) l C/<\’:_>/\/\/\/

5-HETE
LTA,-Hydrolase LTC,-Synthase
(neutrophils, monocytes)

(mast cells, eosinophils)
COOH COOH
H “R

LTB, Cysteinyl-leukotrienes
R= —?ys—GIy LTC,
Glu
R= —Cys—Gly LTD,
R= —Cys LTE,

Fig. 1 Conversion of arachidonic acid by 5-lipoxygenase. LT = leuko-
triene; 5-H(P)ETE = 5-hydro(pero)xyeicosatetraenoic acid.
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cy at the CysLT2 receptor and LTE, is a weak agonist [6]. The
CysLT1 receptor is expressed in eosinophils, monocytes, macro-
phages, and bronchial smooth muscle cells whereas the CysLT2
receptor is expressed more ubiquitously. CysLT1 receptor med-
iates vascular leakage, bronchoconstriction, dendritic cell ma-
turation and migration, but both receptors contribute to macro-
phage activation, smooth muscle proliferation and fibrosis. The
CysLTR antagonists pranlukast, montelukast, zafirlukast, acting
primarily on CysLT1, have been shown to be clinically efficacious
in chronic asthma and have been successfully introduced into
market [7]. The CysLT2 receptor is insensitive to these antago-
nists and the therapeutic potential of this receptor is unclear.

LTB, binds BLT1 and BLT2 receptors, which show high homology
(36-45%), but quite distinct tissue distribution and distinct
pharmacological properties (for review, see [6]). The BLT; recep-
tor is prominently expressed in leukocytes, possesses high affi-
nity (Ky = 0.39 nM) and specificity for LTB,, and is coupled to Gi
and Gq proteins [8]. BLT1 mediates typical effects of LTB, includ-
ing chemotaxis, formation of superoxide, release of lysosomal
enzymes and leukocyte adhesion to endothelial cells. The BLT1
seems to be related to atherogenesis, bronchial asthma, glomer-
ulonephritis, arthritis and chronic inflammatory bowel diseases
(for review see [9]). The more widely expressed BLT2 binds LTB,
with a 20-fold lower affinity as BLT1 and the physiological and
pathophysiological roles of the BLT2 are hardly understood.

Finally, a Gi-coupled GPCR specific for 5-0xo-ETE (formed by oxi-
dation of 5-HETE) may exist in eosinophils, neutrophils and
monocytes [10]. 5-Oxo-ETE is a chemoattractant for leukocytes
and induces actin polymerization, Ca?* mobilization, integrin ex-
pression and degranulation, stimulates the proliferation of pros-
tate cancer cells [11], and may play a role in allergic asthma [12].

5-LO and Diseases

Initially, LTs have been identified as the chemical nature of the
slow-reacting substance of anaphylaxis (SRSA) that induced a
pronounced contraction of smooth muscles in a slow mode, and
it soon became clear that LTs play important roles in inflamma-
tory and allergic disorders. Therefore, bronchial asthma, allergic
rhinitis, inflammatory skin diseases, rheumatoid arthritis, in-
flammatory bowel diseases, have long been accounted as 5-LO-
mediated or -associated (for review see [13]). Today, it is general-
ly agreed that bronchial asthma is the major 5-LO-associated dis-
ease and, in fact, the available anti-LT therapy is approved for
treatment of asthma only. On the other hand, LTs play a minor
role in the pathophysiology of inflammatory bowel diseases and
rheumatoid arthritis in humans. Similarly, the rather disappoint-
ing results of anti-LT drugs in psoriasis led to the conclusion that
the 5-LO pathway is negligible in this disease.

Novel technologies in molecular biology and cell biology, mainly
attributable to the elucidation of the receptors of LTs, genotyping
approaches, and cumulating data from 5-LO knock-out mice led
to deeper insights into the pathophysiology of 5-LO and its pro-
ducts in recent years. Accordingly, there are indications for novel
disorders related to 5-LO products including osteoporosis [14],
[15], cancer (i.e., prostate, pancreas and breast) [16], [17], [18],
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and cardiovascular diseases including atherosclerosis, heart at-
tack and stroke [19], [20]. Clinical trials will reveal if anti-LT ther-
apy is valuable for the treatment of these disorders.

Expression and Structure of 5-LO

Since LTs display strong biological effects it is not surprising that
LT biosynthesis is tightly regulated. This regulation occurs on the
transcriptional level (5-LO expression) as well as on the level of
postranslational regulation and modulation by cofactors (5-LO
enzyme activation) [21]. 5-LO is mainly expressed in mature leu-
kocytes or dentritic cells, and the capability of cells to express 5-
LO is acquired during cell maturation [22]. Although the gene
and promoter of 5-LO are well characterized and important in-
sights into the molecular mechanism of 5-LO expression have
been obtained during the past years [21], pharmacological inhi-
bition of expression 5-LO is a minor strategy for intervention
with LT formation. Nevertheless, when compounds are analyzed
for inhibition of 5-LO using cellular test systems, an effect on the
5-LO protein level must be considered, in particular when long
incubation periods (hours) are applied. Thus, plant extracts or
plant-derived compounds able to induce apoptosis may reduce
5-LO protein levels. In fact, functionally 5-LO protein can be
cleaved by caspase-6 [23] that is activated in leukocytes in re-
sponse to apoptosis-inducing agents.

Particular efforts have been made in order to establish pharma-
cological possibilities to block LT synthesis by interfering with 5-
LO enzyme activity. Along these lines, elucidation of the struc-
ture of the 5-LO protein and the understanding of the regulation
of 5-LO activation and catalysis is of importance [24]. Thus far,
the 3D structure of 5-LO has not been resolved, however, practic-
able computational models of 5-LO based on the structure of 15-
LO from rabbit have been created [23], [25]. These models indi-
cate that 5-LO consists of an N-terminal C2-like -barrel domain
(AA 1-121), with distinct functions and a C-terminal catalytic
domain (AA 121-673) [26], [27].

The C-terminal catalytic domain contains a non-heme iron in the
active site, coordinated by His-367, His-372, His-550, Asn-554
and the C-terminal Ile. This iron acts as an electron acceptor or
donor during catalysis (for review see [28]). In the inactive
form, the iron is in the ferrous state (FeZ*) whereas catalytically
active 5-LO requires conversion to the ferric (Fe3*) iron, accom-
plished by oxidation by lipid hydroperoxides (LOOH). Note that
most 5-LO inhibitors, synthetic ones as well as those from natur-
al sources (e.g., polyphenols, coumarins, quinones) act at the cat-
alytic domain by reducing or chelating the active-site iron, by re-
duction of activating LOOH, or simply by scavenging electrons
participating in the redox cycle of the iron [2], [24]. On the other
hand, no data are available that demonstrate pharmacological
inhibition of 5-LO by interfering with the C2-like domain.

The C2-like domain has a regulatory function, visualized by its
ability to bind various lipids [phosphatidylcholine (PC), glycer-
ides or lipid membranes] [29], [30], Ca?* or Mg?* ions [25], and
coactosin-like protein (CLP) [31]. These interactions stimulate
5-LO catalysis in cell-free assays. In the cell, the C2-like domain
functions as an anchor for association with the nuclear mem-

brane, mediated by tryptophan residues (Trp-13, -75, and -102)
in conjunction with Ca2*[30], [32], and this process seemingly is
essential for cellular 5-LO product synthesis. It is conceivable
that (preferrably lipophilic) compounds may interrupt such 5-
LO membrane association (5-LO translocation inhibitors), there-
by reducing 5-LO product synthesis in the cell. In addition, also
the catalytic domain is subject for external regulation, in partic-
ular by phosphorylation of serine residues (see below). In view of
the complexity of the 5-LO regulation, compounds that suppress
cellular 5-LO product synthesis may not necessarily confer their
inhibitory effect by direct interference with 5-LO catalysis. In-
stead, inhibition of proteins that act in conjunction with 5-LO
(e.g., FLAP, CLP), prevention of stimulatory effects by certain reg-
ulatory co-factors, or blockade of signaling molecules that trans-
duce external cell stimulation to 5-LO activation may be poten-
tial points of attack (see Table 1). Accordingly, the complex regu-
lation of 5-LO activity in the cell often makes it difficult to distin-
guish if a certain compound that suppresses LT formation acts on
5-LO directly or alternatively interferes with concomitant or reg-
ulatory processes. The following chapters will focus on these reg-
ulatory elements and mechanisms that might be subject of inter-
ference with external compounds culminating in reduced 5-LO
product synthesis.

Analysis of Inhibition of 5-LO Product Synthesis: Possible
Points of Attack for External Compounds

Test systems for evaluation of 5-LO inhibitors

When reviewing the overwhelming amount of studies reporting
about the identification of plant-derived compounds as “5-LO in-
hibitors” it became obvious that most studies applied cell-based
test systems for assessing inhibition of 5-LO product synthesis,
but only few studies have actually addressed a direct interaction
of the test compound with 5-LO itself (by means of cell-free as-
says). Certainly, novel compounds that can be structurally and
functionally grouped into the well-recognized classes of 5-LO in-
hibitors (see below) may be assumed to act directly on 5-LO.
However, unless direct inhibition of 5-LO activity has not be
demonstrated, the designation “5-LO inhibitor” is actually not
justified. Moreover, the potency of a given compound may de-
pend on the experimental settings and assay conditions that are
different in each and every study.

Numerous different screening assays have been applied for the
identification of inhibitors of 5-LO product synthesis that can be
basically divided into (1) cellular test systems (e.g., whole blood,
isolated primary leukocytes, 5-LO expressing cell lines) or (2)
cell-free assays (e.g., leukocyte homogenates or cytosol, purified
5-LO enzyme). For conclusive analysis, both types of test systems
should be applied. As discussed in the section below and sum-
marized in Table 1, for cellular assays many possibilities aside
from direct interference with 5-LO exist, eventually suppressing
5-LO product synthesis. On the other hand, the fact that a test
compound inhibits 5-LO in cell-free assays does not unequivo-
cally mean that this applies also for 5-LO in the cell.

For the evaluation of test compounds utilizing cellular test sys-
tems, the correct choice of the 5-LO metabolite(s) to be analyzed

is essential. For example, many studies investigating plant-de-
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Table1 Co-factors and mechanisms involved in 5-LO product formation and respective pharmacological interference by plant-derived com-
pounds
Factor/mechanism Proposed function leading to INDUCTION Interference leading to INHIBITION (Plant-derived) compound

of 5-LO product synthesis

of 5-LO product synthesis

cell viability/integrity prerequisite for cellular response

agonist or respective
signaling molecules

(receptor-coupled) cell stimulation and
signal transduction of 5-LO

cPLA, liberation and supply of AA

FLAP facilitation of AA transfer to 5-LO at nuclear
membrane

CLP binds and stimulates 5-LO at the C2-like
domain

phosphorylation of 5-LO by
a) MK2 or ERKs

a) 5-LO activation in the cell
b) inhibition of 5-LO catalysis and nuclear

b) by PKA trafficking

Ca* stimulates 5-LO by decreasing K, for AA,
facilitates membrane binding, protects
against GPx

PC or membranes stimulation of 5-LO catalysis

(diacyl)glycerides stimulation of 5-LO catalysis, protects
against GPx

ATP binds and stimulates 5-LO catalysis

redox tone LOOH facilitate to enter the redox cycle

of 5-LO catalysis
enables 5-LO to access FLAP and AA
conversion of LTA, to LTB,

nuclear membrane trafficking
LTA, hydrolase

LTC4 synthase/MAPEGs conversion of LTA, to LTC,

acute cytotoxicity causes loss of cellular
functionality

interruption of agonist-induced signal
(e.g. receptor blockade) and signal trans-
duction

lack of substrate for 5-LO product
formation

failure of 5-LO to access AA as substrate

interruption of stimulatory CLP - 5-LO
interaction

a) blockade of MK2/ERK pathway
b) elevation of cAMP/stimulation of PKA

suppression of Ca?* mobilization; Ca?*
chelation

interruption of interaction with PC/
membranes

suppression of glyceride generation or
interaction

ATP depletion or blockade of interaction
with 5-LO

suppression of LOOH formation; reduction
of LOOH

blockade of 5-LO translocation
selective suppression of LTB, levels
selective suppression of LTC,, D4, and E,

saponins [204]

gingkolide BN52021 [43]

manoalide [37], ochnaflavone 24
[102]
knipholone 54 [46]

unknown

a) quercetin 11 [58], [59]
b) ginkgetin 25 [40], [60]

deoxypodophyllotoxin 55 [50]

unknown

1-butanol [205]

2-deoxyglucose [206]

vitamin C and E, carotenoids [207]
genisteine [47]

bestatin [208]
thymoquinone 77 [63],

levels helenalin 93 [62]

rived compounds as “5-LO inhibitors” used ELISA techniques or
HPLC methods in order to measure LTB, or cysLTs (i.e., LTC,4, D,
or E,). These techniques are indeed sensitive and (often) selec-
tive. However, if used as sole method, caution should be taken
when interpreting the results. Thus, a given “active compound”
could affect the enzymatic activities of LTA, hydrolase or LTC,
synthases. Therefore, analysis of direct 5-LO derived products
[i.e., 5-H(P)ETE and the trans- and epi-trans isomers of LTB,] is
important in order to exclude such interrelations. In the subse-
quent section, the regulation of 5-LO enzyme and 5-LO product
synthesis is described in order to understand possible points of
attack that all may lead to suppression of 5-LO product synthesis.

Release of arachidonic acid, redistribution/binding of 5-LO to
the nuclear membrane, and the role of FLAP

Based on the complex interplay of various proteins and the mani-
fold mechanisms involved in cellular 5-LO product formation, a
number of points of attack for a given compound are conceivable.
First of all, acute cytotoxicity coupled to a loss of cell functional-
ity by disruption of cell integrity must be taken into account as a
factor leading to reduced LT synthesis, in particular when lipo-
philic extracts using organic solvents or high concentrations of
detergent-like compounds [e.g., triterpenes (-sapononins), fatty
acid derivatives] are applied.

Upon cell stimulation by an adequate agonist, 5-LO together with
cytosolic phospholipase A, (cPLA,) redistributes from a soluble
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cellular compartment to the nuclear membrane, where cPLA,
liberates AA from phospholipids, which is then transferred to 5-
LO by the membrane-bound 5-LO-activating protein (FLAP) [2],
[33] (Fig. 2). Stimuli able to induce LT formation [e.g., N-formyl-
methionyl-leucyl-phenylalanine (fMLP), platelet-activating fac-
tor (PAF), LTB,, C5a, interleukin-8, phagocytic particles like zy-
mosan, and ionophores] cause activation of 5-LO and cPLA,[2].
Thus, a given test compound may simply interfere with the sti-
mulus used to evoke 5-LO product formation and/or with the
distal signaling, or with AA release by inhibiting PLA, enzymes.
Interestingly, 5-LO and cPLA, share structural (C2 domain) and
regulatory properties [activated by Ca?* and by phosphorylation
by members of the mitogen-activated protein kinase (MAPK)
family] [31], [34]. Indeed, many studies revealed that natural
compounds (e.g., flavonoids and other polyphenols) leading to
suppression of LT formation also act as PLA, inhibitors prevent-
ing AArelease [35],[36], [37], [38], [39], [40]. The anti-inflamma-
tory sesterterpenoid manoalide, for instance, is an irreversible
inhibitor of PLA, enzymes by covalently modifying lysine resi-
dues [41]. Initially, manoalide was proposed as a selective 5-LO
inhibitor based on its ability to potently suppress the formation
of LTs in human PMNL and in rat basophilic leukemia (RBL)-1
cells (ICso = 0.3 uM) [42]. Later, more detailed investigations
confirmed suppression of LT biosynthesis by manoalide, but the
authors showed that the compound does not directly inhibit 5-
LO activity by analysis of the compound under cell-free assay
conditions, suggesting that the inhibitory action is eventually
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stimulus

Fig.2 Activation and signal transduction
of 5-lipoxygenase in leukocytes. Upon cell
stimulation, mobilisation of Ca?* and activa-
tion of MK-2/3 and ERKs stimulate 5-LO in
the cytosol. Moderate cell stimulation may
lead to nuclear import of 5-LO, depending
on the overall 5-LO phosphorylation state.
Subsequent challenge may induce nuclear
membrane association of intranuclear 5-LO.
Robust stimulation causes direct transloca-
tation of cytosolic 5-LO to the nuclear mem-
brane where 5-LO binds in close proximity
to the 5-lipoxygenase-activating protein
(FLAP). In parallel, lipid hydroperoxides
(LOOH) confer the conversion of the active
site iron from the ferrous to the ferric state.
AA is released at the nuclear membrane (by
cPLA;) and transferred via FLAP towards
activated 5-LO for metabolism to LTA, and
5-HPETE. Coactosin-like protein (CLP) is

due to a blockade of PLA, [37]. Also, (receptor) antagonists direct-
ed against the applied stimuli were found to suppress 5-LO prod-
uct synthesis. For example, the gingkolide BN52021, a well-re-
cognized PAF receptor antagonist inhibited LT formation in
primed neutrophils, seemingly by antagonizing the actions of
PAF [43].

The nuclear membrane-bound FLAP facilitates the access of AA
to 5-LO, and in cells that lack FLAP or where FLAP is pharmacolo-
gically inhibited, transformation of endogenous AA by 5-LO is ef-
ficiently blocked [44]. It is clear that not only the supply of AA
but also the access towards 5-LO is a prerequisite for LT bio-
synthesis [44], [45], and one important class of synthetic inhibi-
tors of LT biosynthesis are so-called FLAP inhibitors (e.g., MK-
886, Bay-X-1005). Among plant-derived compounds, the phenyl-
anthraquinone knipholone 54 (Table3), from the roots of
Kniphofia foliosa, was suggested to suppress cellular 5-LO prod-
uct synthesis by inhibition of FLAP [46].

Conversion of endogenously provided AA to LTA, occurs at the
nuclear membrane, implying that 5-LO has to be present at this
locale. In resting cells, 5-LO resides in the cytosol and/or in a nu-
clear soluble compartment, depending on the cell type [2]. For
those cells with intranuclear 5-LO, an import process from the
cytosol is needed, mediated by Arg- and Lys-rich nuclear import
sequences (NIS), and putative NIS are present in the N-terminal
part of 5-LO, and close to the C-terminus [33]. Regardless of the
localization in resting cells, upon agonist challenge 5-LO translo-
cates to the nuclear membrane, a process that requires elevation
of [Ca?*]; and/or phosphorylations (Fig.2). Conclusively com-
pounds that interfere with cellular 5-LO trafficking will cause a
suppression of LT formation. Among natural compounds, the iso-
flavone genisteine from soybean suppressed 5-LO product syn-
thesis in ionophore-stimulated HL-60 cells due to inhibiting 5-
LO translocation [47].

nucleus

bound to 5-LO and stimulates catalysis.

Activation pathways of 5-LO in the cell

Signaling pathways and molecules that initialize the recruitment
of resting 5-LO in the cell to become a catalytically active enzyme
capable of converting AA essentially include Ca?* ions and cer-
tain protein kinases (PKs). Ca%* binds to the regulatory C2-like
domain, mediates binding of 5-LO to PC-containing membranes
or lipid vesicles, lowers the K, value for AA as substrate, and de-
creases the requirement of 5-LO for activating LOOH, which
altogether potently enhances 5-LO catalysis in vitro [21], [24],
[31]. In the cell, Ca?* facilitates 5-LO association with the nuclear
membrane and protects 5-LO activity against GPx activity [48].
Hence, it is reasonable to assume that natural compounds that
chelate Ca?* or interfere with Ca?* mobilization (i.e., by block-
ing channels, or interaction with signaling molecules such as
PLC, IP3 receptors) prevent activation of 5-LO without inhibit-
ing the enzyme directly. For instance, the lignan deoxypodo-
phyllotoxin 55 from Hernandia nymphaeifolia potently impairs
the production of LTC,4 (ICsq = 0.37 uM) in intact cells [49], but
a direct effect on 5-LO was not demonstrated. Of interest, it in-
hibited the increase in [Ca2*]; induced by PAF, LTB,, and thapsi-
gargin [50] that is required for activation of 5-LO. Also, the cou-
marin derivative osthol 70 from Angelica pubescens exhibits
Ca?*-channel blocking properties [51] and inhibits 5-LO in in-
tact cells [52], [53], but direct inhibition of 5-LO has not been
shown.

Recently, 5-LO kinases, namely the p38 MAPK-regulated MAP-
KAPK-2/3, the ERK1/2, CaMKII and PKA [54], [55], [56], [57] that
phosphorylate 5-LO in vitro were identified. Phosphorylations by
MAPKAPKs and ERKs at Ser-271 and Ser-663, respectively, acti-
vate 5-LO in the cell, whereas phosphorylation by PKA at Ser-
523 suppresses 5-LO translocation and 5-LO catalysis. Interest-
ingly, most stimuli that activate 5-LO in the cell are able to raise
[Ca?*]; and/or lead to activation of ERK1/2 and MAPKAPK-2 [24].
Since certain natural compounds possess the ability to block PK
activities, those interfering with ERK1/2 and/or MAPKAPK-2 or
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the respective upstream signaling pathways could block cellular
5-LO product formation by such routes as well. In fact, the flavo-
noid quercetin 11 that suppresses 5-LO product synthesis also
blocks the ERK1/2 and p38 MAPK pathway [58], [59], and plant-
derived tyrosine kinase inhibitors such as genistein reduced 5-
LO activation in HL60 cells [47]. Moreover, agents that cause ele-
vation of cAMP (e.g., ginkgetin 25 from Ginkgo biloba, a potent
inhibitor of cellular 5-LO product synthesis [40], [60]) and thus
stimulation of PKA may suppress 5-LO activity and translocation
by such mechanisms.

In order to enter the catalytic cycle, 5-LO requires conversion of
the ferrous iron to the active ferric state, conferred by certain
LOOHs. Accordingly, the capacity of the cell to form LT is strongly
linked to the peroxide tone. Agents that promote lipid peroxida-
tion upregulate 5-LO product synthesis, whereas on the other
hand, withdrawal of peroxides suppresses 5-LO product forma-
tion (for review, see [2]). It should be observed that many plant-
derived natural compounds (i.e., flavonoids, coumarins, chi-
nones, polyphenols) have reducing properties which may cause
reduction of 5-LO product formation also by decreasing the per-
oxide tone in addition to acting on 5-LO directly.

As outlined above, in addition to these regulatory mechanisms
acting on or upstream of 5-LO product synthesis, the subsequent
transformation of LTA, to LTB, by LTA, hydrolase or to LTC, by
LTC, synthase/MAPEGs provide additional points of attack. This
should be taken into account, in particular when only LTB, or
cysLTs are measured as 5-LO derived products. Well-recognized
inhibitors of LTA, hydrolase are bestatin, captopril, and kelator-
phan that reduce formation of LTB, without affecting 5-LO [61].
The sesquiterpene lactone helenalin 93, present in species of the
Asteraceae family, and thymoquinone 77 from Nigella sativa di-
rectly inhibit LTC, synthase besides inhibition of 5-LO [62], [63].

Molecular Pharmacology of 5-Lipoxygenase Inhibitors
Based on the pathophysiological implications of 5-LO products

and the potential benefit of an anti-LT therapy in a variety of dis-
eases, great efforts have been made within the past 25 years in
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order to develop selective and potent pharmacological agents
that intervene with LTs. Basically, two different strategies have
been pursued to reach this aim: (I) inhibition of the biosynthesis
of LTs and (II) inhibition of the action of LTs.

Synthetic derivatives of LTs or prostaglandins were first de-
scribed as inhibitors of LT biosynthesis [64], [65]. To achieve re-
duction of LT formation, reasonable targets include PLA, en-
zymes, 5-LO, FLAP, LTA, hydrolase and LTC, synthase/MAPEGs,
with 5-LO being the preferred target. Although experiments in
cPLA,-deficient mice support the concept that inhibition of PLA,
enzymes prevents the formation of basically all eicosanoids [66],
clinical studies using glucocorticoids that suppress cPLA, en-
zymes proved to be ineffective in reducing the levels of LTs [5].

Most of the compounds that interfere with LT synthesis are direct
5-LO inhibitors, that advantageously block the formation of both
LTB, and cysLTs as well as the synthesis of 5-H(P)ETE. These di-
rect 5-LO inhibitors are classified according to their molecular
mode of action as (1) redox-active 5-LO inhibitors, (2) iron-li-
gand inhibitors, (3) non-redox-type 5-LO inhibitors, and finally
(4) compounds that act on 5-LO by so far unrecognized mecha-
nisms (for review see [2]).

Redox-active 5-LO inhibitors comprise lipophilic reducing agents,
and among those there are many prominent plant-derived clas-
ses like flavonoids, coumarins, quinones, coumarins, lignans and
other polyphenols. Also the first synthetic 5-LO inhibitors belong
to the class of redox-type 5-LO inhibitors, represented by AA-861
1, L-656,224 2, phenidone, or BW755C [67], [68] (Fig.3). These
drugs act by keeping the active site iron in the ferrous state,
thereby uncoupling the catalytic cycle of the enzyme and are
highly efficient inhibitors of 5-LO product formation in vitro and
partially also in vivo. However, most of them lack suitable oral
bioavailability, possess only poor selectivity for 5-LO and thus,
exert severe side-effects (e.g., methemoglobin formation) due
to interference with other biological redox systems or by the pro-
duction of reactive radical species [69]. These detrimental fea-
tures hampered the substances to enter the market.

F Fig.3 Chemical structures of different
types of synthetic inhibitors of 5-LO product

synthesis. AA-861 1 and L-656,224 2 are re-

o]

= "@%

Ij@/\ ° Y dox-type 5-LO inhibitors, BWA4C 3 and zi-
N

CH, leuton 4 are iron-ligand-type 5-LO inhibi-

tors, ZD 2138 5, ZM 230487 6, |-697,198 7
and L-739,010 8 are non-redox-type 5-LO in-
hibitors, MK-886 10 is a FLAP inhibitor, and
licofelone 9 is a dual inhibitor of COX and
5-LO product synthesis.
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Iron ligand inhibitors chelate the active site iron via a hydroxa-
mic acid or an N-hydroxyurea moiety and also exert weak redu-
cing properties. BWA4C 3, a hydroxamic acid and zileuton 4, a
hydrolytic stable N-hydroxyurea derivative belong to this class
of potent and orally-active 5-LO inhibitors [70], [71]. Zileuton
(Zyflo®, ICso = 0.5-1uM in stimulated leukocytes) has been
available in the USA for the treatment of asthma, but was discon-
tinued in June, 2003 and is currently being re-evaluated for clin-
ical efficacy. Zileuton improved acute and chronic airway func-
tions, associated with a decreased need for beta-agonists or glu-
cocorticoids [72]. However, the therapeutic potential in allergic
rhinitis, rheumatoid arthritis, and inflammatory bowel disease
was low [73].

The non-redox-type 5-LO inhibitors compete with AA or LOOH
for binding to 5-LO without redox properties and encompass
structurally diverse molecules. It is still unclear if the binding-
site of these compounds is in fact the AA substrate-binding cleft
in the active site. Thus, experimental data from molecular and
biochemical studies suggest an allosteric mode of action [74].
Nonetheless, representatives out of this class such as the orally
active compounds ZD 2138 5 or its ethyl analogue ZM 230487 6
or L-739.010 8 are highly potent and selective for 5-LO in cellular
assays [24]. We found that elevated peroxide levels and/or phos-
phorylation of 5-LO by MAPKAPK-2 and/or ERKs strongly im-
paired the potency of non-redox-type 5-LO inhibitors in activat-
ed PMNL [74], [75], [76].

Recent developments in the field of anti-inflammatory drugs
yielded compounds that act not solely on 5-LO, but also on other
relevant targets including COX enzymes, the PAF or the H1 re-
ceptor (so-called dual inhibitors) [77]. A prominent representa-
tive is licofelone 9 (ML-3000, currently undergoing phase III
trials) that potently inhibits 5-LO and COX product formation in
the submicromolar range [78]. In fact, many plant-derived com-
pounds have been described to suppress the activities of both 5-
LO and COX enzymes (see below). Incorporation of an N-hydro-
xyurea functionality onto well-characterized PAF receptor an-
tagonists consisting of 2,5-diaryltetrahydrofurans (CMI-392) re-
sulted in a potent dual function compound (5-LO and PAF) [79]
which may provide therapeutic advantages over agents with
only single activity [77]. Similarly, hybrid molecules containing
N-hydroxyureas or N-hydroxycarbamates (5-LO pharmacophore)
connected to benzhydryl piperazines (H; receptor antagonistic
moiety) are currently developed for the treatment of asthma [80],
[81].

An indirect pharmacological strategy to reduce the formation of
LTs is the inhibition of FLAP. Cells expressing 5-LO but lacking
FLAP produced no LTs, although 5-LO was active in the cor-
responding homogenates [82]. No LT synthesis is detectable in
FLAP-deficient macrophages from knock-out mice [83]. The in-
dole MK-886 10 was the first synthetic FLAP inhibitor that po-
tently inhibits 5-LO product formation in intact isolated leuko-
cytes (ICso = 2.5 nM) [84]. However, in whole blood MK-886 10
is much less efficient (ICsq, 1.1 uM), and LTB, biosynthesis ex
vivo in whole blood was only partially blocked [85]. In addition
to indole structures, quinolines and hybrid structures of indoles
and quinolines were found to bind FLAP and to inhibit LT bio-
synthesis in intact cells. Obviously, these FLAP inhibitors are po-

tent blockers of LT synthesis in isolated PMNL, whereas in whole
blood assays the drugs are 50- to 200-fold less active [86], [87],
possibly due to high plasma protein binding of the drugs and/or
competition with AA and other fatty acids for binding to FLAP [88].

Inhibitors of 5-LO Product Synthesis from Plant Origin

Starting from the early 1980 s until today, several hundred re-
ports have described plant extracts and/or specific ingredients
thereof capable of suppressing the biosynthesis of 5-LO pro-
ducts. In most of these studies, plant-derived compounds were
tested for their ability to block LT synthesis in isolated cells
from rat, mice or human sources. In 1981, Bokoch and Reed pub-
lished the polyphenol nordihydroguaiaretic acid 41 (NDGA) from
the Mexican dessert plant Larrea divaricata as the first plant-de-
rived 5-LO inhibitor [65]. Later, Koshihara et al. reported about
natural compounds isolated from the Chinese plant Artemisia
rubris, which were caffeic acid 36, eupatilin and 4-demethyleu-
patilin that inhibited 5-LO activity in a cell free-assay as well as
the formation of LTC, and D, in ionophore-stimulated mastocy-
toma cells [89]. Like NDGA 41, caffeic acid 36 is a lipophilic phe-
nolic compound, and eupatilin and 4-demethyleupatilin are fla-
vones, and all of them possess reducing properties, thus, acting
as antioxidants. In parallel, esculetin 65, an ortho-dihydroxycou-
marin derivative present in many plants, was identified as a 5-LO
inhibitor [90]. Note that these different “5-LO active” compounds
mentioned (and many more, see below) have a cathechol partial
structure in common, and it is assumed that the combined iron-
chelating and antioxidant feature of this moiety is eventually
responsible for uncoupling of the 5-LO catalytic cycle. Since the
plant kingdom is a rich source for various polyphenols, flavo-
noids and coumarins, subsequent investigations addressed var-
ious representatives with phenolic or coumarin structure from
different plants [91], [92], [93]. A second class of plant-derived
5-LO inhibitors constitutes compounds lacking reducing proper-
ties that may mimic fatty (arachidonic) acid structures including
polyacetylenes, and triterpenes and thus, inhibit 5-LO activity by
binding and/or competing at the substrate-binding site or at a
hypothetical fatty acid-binding cleft of 5-LO.

In the following section it is attempted to compile and group
plant-derived compounds that have been reported to interfere
with 5-LO product synthesis primarily according to structural as-
pects but also with respect to their mode of action. The respec-
tive test systems, differentiated into cell-based (intact cells) or
cell-free assays have been considered and specified. Moreover,
focus is placed on the effects of compounds on 5-LO, whereas ef-
fects on related enzymes including PLA,, 12/15-LO, COX and NOS
(that are in fact quite frequent) as well as in vivo efficacy in ani-
mal models or human studies have been mainly neglected. This
list is far away from being complete and only compounds are
considered that efficiently (ICsq < 50 uM) block 5-LO product for-
mation. It is worthwhile to mention that most of these com-
pounds have been evaluated in only one type of assay, preferably
a cellular test system, which makes it exceedingly difficult to de-
duce concrete structure-activity relationships (SARs) due to mul-
tiple possible targets. As discussed above, from results obtained
from only a cell-based assay, it is critical to designate an active
compound as a “direct 5-LO inhibitor”.
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Flavonoids and other polyphenols

Polyphenols, basically grouped into flavonoids, phenolic acids
(mainly caffeic acid derivatives), stilbenes and lignans are the
most abundant antioxidants in consumed food together with
other dietary reducing agents (e.g., carotenoids, vitamin C and
E). They protect cells and tissues against oxidative stress and
against associated pathologies such as cancers, cardiovascular
disease and inflammation [94]. Epidemiological studies indicate
that populations consuming specific polyphenol-rich food have a
lower incidence of chronic inflammatory disorders and there is
evidence that the health benefits associated with fruits, vegeta-
bles and red wine are linked to the antioxidant properties of
polyphenols [95]. Nevertheless, most beneficial effects of poly-
phenols have been obtained from in vitro studies, and the bio-
availability and bioefficacy is affected by various metabolic
transformations during digestion and absorption in vivo. Poten-
tial molecular mechanisms of polyphenols underlying the anti-
inflammatory activities include differential interference with
AA cascade-dependent (PLA,, COX, LOs) and AA cascade-inde-
pendent enzymes or receptors [e.g., NOS, NFxB, peroxisome pro-
liferator-activated receptors (PPARs) and NAG-1], depending on
the overall structure of each individual polyphenol [94], [96].
Seemingly, a combination of iron-chelating and iron-reducing
properties (frequently as catechol structure) mediates inhibition
of 5-LO activity.

Flavonoids are widely distributed in the plant kingdom and
more than 4000 derivatives have been identified [97]. Besides
anticancer, antiviral, antimicrobial, immunmodulatory and an-
tithrombotic activities, the anti-inflammatory properties, ob-
served in vitro and in vivo, are most recognized. Thus, flavonoids
have been shown to inhibit acute or chronic inflammation in var-
ious animal models such as rat Freund’s adjuvant arthritis [98],
[99] and carrageenan-induced mouse paw edema, when given
orally [99], [100]. In particular, however, flavonoids showed ben-
eficial effects in AA-induced ear edema, when applied topically
(for review see [97]). The reduction of reactive oxygen species
and the suppression of eicosanoid biosynthesis due to interfer-
ence with PLA,, COX and LO enzymes may be the major underly-
ing molecular mechanisms. However, flavonoids can also act on
the transcriptional level, interfering with the expression of iNOS,
COX-2 and cytokines.

Together with other polyphenols (see below), flavonoids consti-
tute the most prominent class of plant-derived inhibitors of 5-LO
product synthesis. Since many (potent) flavonoids have been an-
alyzed for inhibition of 5-LO product synthesis only in intact
cells, it is not always clear if reduced formation of 5-LO products
is caused by direct inhibition of 5-LO or by inhibition of PLA, en-
zymes (reduced AA supply). In fact, certain biflavonoids like
ginkgetin 25 [101] and ochnaflavone 24 [102] or papyriflavonol
20 [103] and quercetin 11 [104] that all suppress 5-LO product
synthesis, efficiently inhibit PLA, enzymes.

As shown in Table 2, 5-0-demethylnobiletin 16, cirsiliol 17, luteo-
lin 19, papyriflavonol 20, ginkgetin 25, and rhamnetin 14 potent-
ly suppress 5-LO product formation in intact cells with ICs; val-
ues below 1 uM. In cell-free assays, quercetin 11, 5-O-demethyl-
nobiletin 16, cirsiliol 17, artonin E 22, sophoraflavanone G 30, and
kenunsanone A 31 are potent 5-LO inhibitors (ICso < 1 uM) with
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sophoraflavanone G 30, a prenylated flavanol from Sophora
flavescens, being most efficient (ICs, = 0.09-0.25 uM) [105]. So-
lely for quercetin 11, 5-O-demethylnobiletin 16, cirsiliol 17 and
papyriflavonol 20 was the efficacy in both cellular and cell-free
assays determined (Table 2), where the effectiveness appeared
generally somewhat higher under cell-free conditions. An excep-
tion is papyriflavonol 20 which is more potent in intact cells, pre-
sumably due to higher lipophilicity (two prenyl residues) and
thus, intracellular accumulation and/or additional intracellular
effects. SARs imply that compounds with vicinal phenolic hydro-
Xy groups, that is hydroxylation in positions 3’ and 4’ of ring C,
seem superior over unsubstituted (i.e., baicalein 18), mono-hy-
droxylated (xanthomicrol 15) or tri-hydroxylated (myricetin 12)
derivatives (IC5y = 7-29 uM, Table 2). Nevertheless, an ortho-di-
hydroxy structure is not essential since sophoraflavanone G 30
and kenusanone A 31 lacking this moiety are most potent. It is
interesting that also flavonoids where the hydroxy groups are re-
placed by methoxy functions are highly effective. For example,
the polymethoxyflavone 5-O-demethylnobiletin 16 from Sideritis
tragoriganum carries only one free OH group but is one of the
most potent representatives (ICso = 0.25 and 0.35 uM) [106]. On
the other hand no clear SARs are obvious with respect to variations
of the nature and number of substitutents at ring A. Also, the C-
2,3-double bond as well as the C-3-OH in ring B seem not abso-
lutely required, since kenusanone A 31 lacking the double bond
[105], and epicatechin 32, a flavanol [ 107], are significantly active.
Regarding the C-3-OH in ring B, luteolin 19 (lacking this moiety) is
even more potent than its direct counterpart quercetin 11, a fla-
von-3-ol derivative [ 108]. Of interest, the prenylated flavonoids in-
cluding payriflavonol 20, morusin 21, artonin E 22, sanggenon D
26, sophoraflavanone G 30 and kenusanone A 31 are highly effi-
cient direct 5-LO inhibitors with ICsq values 0.09 to 7 uM in cell-
free assays [105]. Unfortunately, among those, only for papyrifla-
vonol 20 has the efficacy in intact cells been demonstrated [103].
Although for inhibition of cellular 5-LO, the flavonoid aglycones
are generally superior over the corresponding glycosides, the myr-
icetin 3-0-B-p-glucuronide 13 is more efficient than the cor-
responding aglycone myricetin 12 under comparable assay con-
ditions [99], [109], probably related to more effective cellular up-
take of the glycoside by specific transporters. Finally, one should
observe that different studies evaluating essentially the same
compound may come up with completely different efficacies, as
in the case of quercetin 11 (ICs, = 0.3 or 25 uM [110], [111]) or
morusin 21 (ICs, = 2.9 or >100 uM [105], [112]) analyzed in cell-
free assays, again implying that the results obtained in each and
every study strongly depend on the respective experimental set-
tings of the test system.

Since conventional flavonoids show only weak efficacy after oral
administration, presumably due to poor bioavailability (low ab-
sorption) and/or rapid metabolism and elimination, the more li-
pophilic prenylated derivatives may possess the advantage of fa-
cilitated membrane (and skin) penetration in addition to their
higher potency as 5-LO inhibitors, suggesting a potential for topi-
cal treatment of inflammatory skin diseases [103], [105], [113].
Nevertheless, oral intake of flavonoid-rich nutrition (i.e., choco-
late) led to significant decreases in the plasma concentrations of
cys-LTs in human subjects [114] supporting the beneficial effects
of daily dietary intake of flavonoids.

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.



Table2 Flavonoids that inhibit 5-LO product synthesis (n.d. = not determined)

No. Compound Structure ICsy, intact ICsy, cell-free Plant Ref.
11 quercetin 3.2uM 0.3 uM, 25 uM Lonicera japonica, [209],
ubiquitous [110],
[117]
12 myricetin 13 uM n.d. ubiquitous [109]
13 muyricetin-3-O-f-o- 0.1 uM (rat), n.d. Epilobium angustifolium [99] '?
glucuronide 2.2 uM (human) <,
m
g

14 rhamnetin 0.7 uM n.d. Guiera senegalensis [210]
15  xanthomicrol HC. OH 29.2uM n.d. Stachys chrysantha [217]
H,cO O o O
I
b
CH, OH O
16 5-O-demethylnobiletin HCuq Q O‘CH, 0.35uM =~0.25uM Sideritis tragoriganum [106]
° 0
17  irsiliol 0.4 uM 0.1 uM Salvia officinalis [91]
1339
3]
o
S
18  baicalein 7.13 uM n.d. Scutellaria baicalensis [212], s
9.5 uM [98] e
IS
ke
c
2
3
19  luteolin 0.1 uM n.d ubiquitous [108] 9
=
=
@
1S
5
o
o)
S
20  papyriflavonol 0.64 uM 7 uM Broussnetia papyriferra [105], g
[103] =
21 morusin n.d. 2.9 uM, Morus alba [112],
>100 uM [105]
22 artoninE n.d. 0.36 uM Artocarpus communis [112]
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No. Compound Structure ICsy, intact ICsy, cell-free Plant Ref.
23 silibinin 15 uM n.d. Silybum marianum [213]
24 ochnaflavone 6.56 uM n.d. Lonicera japonica [214]
25  ginkgetin 0.33uM n.d. Ginkgo biloba [40]
26  sanggenon D n.d. 4uM Morus mongolica [105]
27  hamamelitannin n.d. 1uM Hamamelis virginiana [215]
28  chrysoeriol 7-0-B- 11.7uM n.d. Stachys chrysantha [211]

(3-E-p-coumaroyl)-

glucopyranoside
29  echinoisosophoranone n.d. 19uM Echinosophora koreensis [105]
30 sophoraflavanone G i n.d. 0.09 - 0.25 uM Sophora flavescens [105]

HO OH
HO o U
Hac’o e

31  kenusanone A n.d. 0.5-0.9uM Echinosophora koreensis [105]
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No. Compound Structure ICsy, intact ICsy, cell-free Plant Ref.
32 epicatechin @:OH n.d. 22 uM Erythroxylum coca [107]
HO o\r\« on
"o
OH
33  epigallocatechin OH n.d. <30 ug/mL Camellia sinensis [216]
OH
HO. o, on
" am
OH

In addition to flavonoids, other groups of polyphenols consti-
tute rich sources of inhibitors of 5-LO product synthesis. These
compounds greatly vary in their structure and consequently in
their efficacy. Mechanistically, polyphenols (like flavonoids)
may act as antioxidants thereby keeping the active site iron of
5-L0 in the inactive ferrous state, and the para-hydroxy group
might mediate the iron-chelating properties. In Table 3, a num-
ber of structurally different polyphenols are compiled. Just as
for the flavonoids, most of the 5-LO inhibition experiments
were exclusively performed using cell-based assays, whereas
only few studies have addressed inhibition of cell-free 5-LO and
even less data are available from evaluations in both assay sys-
tems.

In intact cells, gingerols 53 [115], [116], 6-hydroxy-2-(2-hydroxy-
4-methoxyphenyl)benzofuran 51 [117], 2-[(2’E)-3",7’-dimethyl-
2’,6-octadienyl]-4-methoxy-6-methylphenol 40 [118], hyperfor-
in 48 [119], NDGA 41 [65], 3,4,2"4"-tetrahydroxy-2-geranyldihy-
drochalcone 60 [120], deoxypodophyllotoxin 55 [49], and the
related lignan derivative diphyllin acetylapioside 56 [121] are
highly efficient inhibitors of 5-LO with ICs, values of 0.004 to
3 uM. From these data, clear SARs are not immediately apparent,
although it seems that increased lipophilicity (due to extended
alkyl or alkylene chains) and increasing numbers of phenolic hy-
droxy groups govern the potency. This can be visualized by com-
parison of hydroxytyrosol 34, composed of a catechol structure
and a hydroxyethyl residue (ICsy = 10-26 uM) [122], [123], and
urushiol 43, possessing an extended alkyl chain (IC5y = 2 uM)
[124].

For some compounds, the potency for 5-LO inhibition correlates
to the ability to scavenge reactive oxygen species or to unspecifi-
cally suppress lipid peroxidation [109], but on the other hand
polyphenols without free phenolic OH groups (i.e., deoxypodo-
phyllotoxin 55) or derivatives lacking strong antioxidant proper-
ties (hyperforin 48, myrtucommulone 49) are highly efficient 5-
LO inhibitors [119], [125], [126]. Also, many polyphenols that ef-
ficiently block 5-LO fail to inhibit the related 12- and 15-LOs that
also exert a sensitive iron redox cycling. It is obvious that most of
the active polyphenols resemble fatty acid-like structures, either
possessing a (vinylogue) carboxylic acid moiety (e.g., caffeic acid
36, hyperforin 48, myrtucommulone 49, lobaric acid 57, and ros-
marinic acid 42) or an acidic phenol core (e.g., NDGA 41, curcu-

min 52). For caffeic acid phenethyl ester (ICs, for purified 5-LO <
10uM) exhibiting antioxidant properties, an uncompetitive
binding to the 5-LO-substrate complex, but not to the free 5-LO
enzyme, was demonstrated [127]. A recent study [128] applied
surface plasmon resonance biosensor technology to investigate
the binding features of typical 5-LO inhibitors, among them
NDGA 41, caffeic acid 36 and the 6,7-dihydroxylated coumarin
esculetin 65 (see below) that are all assumed to act as antioxi-
dants at the active site of 5-LO. The equilibrium dissociation con-
stants (Kp) values showed a good correlation to the reported ICs,
values implying that in addition to the antioxidant capacity the
binding of these compounds parallels 5-LO interference [128].
Collectively, multiple structural and chemical features deter-
mine the 5-LO inhibitory action of polyphenols and definite
SARs are hard to be deduced.

Remarkably potent polyphenols that inhibit 5-LO in cellular as
well as in cell-free assays in the submicromolar range are the
benzofuran derivatives medicarpin 50 and 6-hydroxy-2-(2-hy-
droxy-4-methoxyphenyl)benzofuran 51 from the Chinese plant
Dalbergia odorifera (Jiangxiang) (ICsq = 50-500 nM) [117],
3,4,2"4’-tetrahydroxy-2-geranyldihydrochalcone 60 from
Artocarpus communis (ICso = 0.05-1uM) [120] and the acyl-
phloroglucinols hyperforin 48 (ICsq = 0.09-1.2 uM) from St.
John'’s wort (Hypericum perforatum L.) [119], and myrtucommu-
lone 49 (ICsy = 1.8-5 uM) from myrtle (Myrtus communis L.)
[126]. These compounds may be regarded as potent and direct
5-LO inhibitors. Similarly, the well-recognized curcumin 52
from Curcuma longa L. [39], [129] and the structurally related
gingerols 53 from Zingiber officnialis Roscoe [115], [116] proved
to inhibit 5-LO in cell-based and cell-free assays with ICs, <
1 uM. Interestingly, compared to the prenylated hyperforin 48,
the structurally related polyphenols such as erychristagallin 46
[130], or kuraridin 47 [105] possessing lipophilic prenyl resi-
dues (that seemingly enhance the potency of flavonoids) are
significantly less effective with ICsq values > 20 uM. Among the
most recognized bioactive polyphenols, also the stilbene res-
veratrol 37 has been reported to inhibit 5-LO product synthesis
in PMNL with ICs, values in the low micromolar range [93],
[131]. Taken together, polyphenols (including flavonoids) are a
rich source of plant-derived inhibitors of 5-LO product syn-
thesis. Given their inhibitory action also on PLA, and related
diooxygenases within the AA cascade (such as 12-LO and COX-
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Table3 Polyphenols that inhibit 5-LO product synthesis
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No. Compound Structure ICsy, intact ICsy, cell-free Plant Ref.
OH
34 hydroxytyrosol 10 to 26 uM 13 uM Olea europaea [123],
HO [122],
OH [217]
35  eugenol H C,ODNCHZ 20 uM 26 uM Syzygium aromaticum [218],
E)
[117]
HO
36 caffeic acid o n.d. 3.7uM Artemisia rubripes [89]
"o
HO
OH
37  resveratrol OH 1.37-89uM  n.d. Polygonum muiltiflorum [93]
HO O Ny O [131]
OH
38; phenylethyl ferulate; 5.75 uM; n.d.; Notopterygium incisum [219]
39  bornyl ferulate Sy OK/@ 10.4 uM n.d.
HO
o,
CH,
P&
. G
HO'
o,
CH,
40  2-[(2°E)-3%,7"-dimethyl-27, OH 0.1 uM n.d. Atractylodes lancea [118]
6-octadienyl]-4-methoxy- W€ = ES
6-methylphenol
O-ch
41 nordihydroguaiaretic acid 0.8 uM 28 uM Larrea divaricata [65],
(NDGA) [109],
[117]
42 rosmarinic acid <10uMm n.d. Rosmarinus officinalis [220]
43 urushiol 2uM n.d. Toxicodendron radicans [124]
44 magnolol 2-10uM 15-25uM Magnolia obovata [35],
[221],
[222],
[223]
45 bakuchiol 23.5uM n.d. Psoralea glandulosa [36]
46  erycristagallin 23.4uM n.d. Erythrina mildbraedii [130]
47 kuraridin n.d. 22 uM Sophora flavescense [105]
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No. Compound Structure ICsy, intact ICsy, cell-free Plant Ref.
48  hyperforin 1.2uM 0.09 uM Hypericum perforatum [119]
49  myrtucommulone 1.8uM 5uM Myrtus communis [126]
~
m
=
m
g
50 medicarpin 0.5 uM n.d. Dalbergia odorifera [117]
51  6-hydroxy-2-(2-hydroxy-4- HO 0.05uM 0.08 uM Dalbergia odorifera [117]
methoxyphenyl)-benzofuran
yphenyl) O A O N
HO' o CH,
52 curcumin o o 2.7 uM 0.7 -30uM Curcuma longa [39],
H,C~ O = 7 O~ch, [129],
O [111]
HO OH
53  gingerols o 0.004 - 3 uM n.d. Zingiber officinalis [116],
~ 115
H,C OD/J\/\( GH,n-CH, [115]
HO
54 knipholone 4.2 uM n.d. Kniphofia foliosa [46]
1343
55  deoxypodophylotoxin <0 . 0.37 uM n.d. Anthriscus sylvestris [49]
o o
i o
ne® S
56  diphyllin acetylapioside ho oM 0.5uM =10 uM Haplophyllum hispanicum [121]
oH
By
Yy
b
T Q,
0
o—
57  lobaric acid e o 5.5uM n.d. Stereocaulon alpinum [224]
’ o oH
OH o COOH
H!
58  carnosol OH CH, 2uM n.d. Rosmarinus offcinalis [109]
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Table3 cont.

No. Compound Structure ICsy, intact 1Csy, cell-free Plant Ref.
Q. CH,oH

59  monocaffeoylprenylhydro- o 33 uM n.d. Phagnalon rupestre [225]

quinone glucoside \ HD%O oH

OH
HO 7
OH

60  3,4,2"4"-tetrahydroxy-2- 1uM 0.05 uM Artocarpus communis [120]

geranyldihydrochalcone

(AG5-1)
62; stemofuran G; OH WG OH 3.7 uM; n.d. Stemona species [226]
63; stemanthrenes A H,C 8.5 uM;
64 andD O 3 O cH, 4.8uM

o}

HC—0  CH,

H,C—0 CH,

NaSe ™
H.,C—0O

1/2), intervention with the biosynthesis of eicosanoids may be
one important mode of action underlying the anti-inflamma-
tory properties of these compounds.

Coumarins

The almost two thousand coumarins identified from plants, fun-
gi and bacteria comprise a class of phenolic compounds made of
fused benzene and o-pyrone rings (see Table 4). The biological
effects of coumarin (1,2-benzopyrone) itself and 7-hydroxycou-
marin (umbeliferrone) have been well studied [132]. The mani-
fold possible substitutions and conjugations at the basic coumar-
in structure offer a great variety of distinct derivatives that occur
naturally, and these modifications eventually determine the
pharmacological and biochemical properties of the respective
coumarin [133], [134]. Although coumarin itself and 7-hydroxy-
coumarin do not inhibit 5-LO, the 6,7-dihydroxycoumarin escu-
letin 65 has long been recognized as a 5-LO inhibitor [90]. Cou-
marin was suggested to act as prodrug, since metabolism in
man leads to hydroxylation at C-7, and obviously, 5-LO-active
coumarins possess a 7-hydroxy moiety. In general, coumarins
with an ortho-dihydroxy moiety such as esculetin 65 [90], [135],
4-methylesculetin, daphnetin 66 and fraxetin 67 [135] suppress
5-LO product formation with ICs, values of 1.46 to 10 uM (com-
pare Table 4), more or less accompanied by efficient inhibition
of lipid peroxidation and scavenging of superoxide and aqueous
alkylperoxyl radicals [135], [136]. It was suggested that, like
polyphenols, the high potency of dihydroxylated coumarins is
related to the combined effect of the compounds to chelate the
active-site iron and to interrupt the iron redox cycle by donating
electrons [134], [136]. Similarly, the dihydroxylated coumestan
derivative wedelolactone 72 from Ecliptica alba potently inhibits
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5-LO in porcine leukocytes (ICsq = 2.5 uM), seemingly by an oxy-
gen radical scavenger mechanism [137]. However, the 6-(3-car-
boxybut-2-enyl)-7-hydroxycoumarin 68 from Peucedanum
ostruthium, characterized by only one OH moiety, a prenyl resi-
due and a carboxylic group, is the most potent coumarin deri-
vative (IC5, = 0.25uM in a cell-based assay) [138]. This com-
pound showed marked effectiveness in carrageenan-induced
rat paw edema after oral administration (EDs, = 0.03 mg/kg)
[138]. Also other monohydroxylated (osthenol 69 and psorali-
din 73 [52], [53], [105]) or O-alkyl derivatives (osthol 70 and
imperatorin 71, that lack free phenolic hydroxy groups at all
[52],[53],[139]) inhibit 5-LO product synthesis, albeit less effi-
ciently. The latter compounds contain prenyl residues that ap-
parently govern interference with 5-LO product formation. As
for polyphenols, substantial data are available for the efficacy
of coumarin derivatives on 5-LO in intact cell assays, but only
sparsely have results been reported about their direct inhibi-
tory action on 5-LO (Table4). In contrast to many flavonoids
and other polyphenols, coumarins are relatively selective for
5-LO and hardly inhibit other enzymes within the AA cascade
such as 12/15-LOs, PLA, and COX enzymes.

Quinones

Compounds possessing an 1,4-benzoquinone moiety exemplified
by the synthetic substance 2,3,5-trimethyl-6-(12-hydroxy-5,10-
dodecadiynyl)-1,4-benzoquinone (AA-861; 1), have long been re-
ported as potent 5-LO inhibitors [67]. In the cell, the quinone
moiety is reduced to hydroquinone which is able to reduce the
active site iron in 5-LO, suggesting that the reducing character
confers 5-LO enzyme inhibition [140]. However, as in the case of
flavonoids, polyphenols and coumarins the potency of quinones
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Table4 Coumarins that inhibit 5-LO product synthesis

No. Compound Structure ICsy, intact ICsy, cell-free Plant Ref.
Ho %
65 esculetin m 1.46uM, 4uM n.d. ubiquitous [135],
Ho 0" o [90]
66  daphnetin 2 6.9 uM n.d. Daphne giraldii [135]
OH
67  fraxetin HC—0 . 2.57 uM n.d. Aesculus hippocastanum [135]
Homo
OH
68  6-(3-carboxybut-2-enyl)- 0.25uM n.d. Peucedanum ostruthium [138]
7-hydroxycoumarin Hoocj\/m
HO' o Yo
69  osthenol = 43.1uM n.d. Angelica pubescence [52],
/(?\ )
HO 0" o
70  osthol . 36.2uM n.d Atractylodes lancea [52],
HCo [53]
o oo
I
71 imperatorin / o <15uM n.d. Cachrys trifida [139]
72 wedelolactone 2.5uM n.d. Eclipta alba [137]
73 psoralidin n.d. 3.6-8.8uM Psoralea corylifolia [105]

does not solely depend on the reducing properties but also paral-
lels their lipophilicity. For example, inhibition of 5-LO by AA-861
1 was found to be competitive with regard to AA [67]. Also, a me-
chanistic analysis of the interaction of a-tocopherol (vitamin E,
also a 1,4-benzoquinone derivative) with purified 5-LO showed
that the potent 5-LO inhibition (IC5, = 5 uM) is unrelated to the
antioxidant function, but instead is accounted by a selective and
tight binding of o-tocopherol to a single 5-LO peptide [141].

In 1993, Fukuyama first reported about naturally occurring 5-LO
inhibitors with a quinone structure derived from the rhizome of
Ardisia japonica (Blume). This [142] and subsequent studies
[143], [144], [145], [146] identified ardisianone A 76, ardisiaqui-
nones A 74,B 75a, D 75b, E 75¢, and F 75d, as well as maesanin 83
(Table 5) as potent inhibitors of 5-LO in cell-free assays with ICs,
values = 0.2-1 uM. In intact cells, ardisiaquinone A 74, the most
potent analogue in cell-free assays was less efficient (IC5, =
5.56 uM) [146]. Structurally related compounds with extended
alkyl, alkylene or isoprenyl residues such as chromenols 82
from Ircina spinosula [147] or atracylochromene 80 and 2-[(2E)-
3,7-dimethyl-2,6-octadienyl]-6-methyl-2,5-cyclohexadiene-1,4-

dione 81 from Atractylodes lancea (Thunb.) [53], [118] might be
superior, at least in intact cells (IC5y = 0.2 - 7.5 uM, see Table 5).
Thymoquinone 77 and its polymer nigellone 78 from Nigella
sativa (L.) that lack pronounced lipophilic residues are quite effi-
cient as well [63], [148], [149]. Direct inhibition of 5-LO in cell-
free assays was demonstrated for the ortho-quinone aethiopi-
none 79 from Salvia aethiopsis (L.) [150] and thymoquinone
77(63] with ICs, values of 0.11 and 3 uM, respectively, and both
compounds suppressed 5-LO in activated leukocytes with com-
parable efficacies (Table 5). More detailed analysis of thymoqui-
none’s 77 action revealed that, in addition to 5-LO (ICsy = 3 uM),
it also blocks LTC, synthase activity, albeit less potently
(ICso = 10uM) [63], and aethiopinone 79 inhibited synovial
PLA, (ICsq = 10uM), but had no effects on COX enzymes
[150]. Some of the investigated quinones {e.g., thymoquinone
77, atracylochromene 80 and 2-[(2E)-3,7-dimethyl-2,6-octa-
dienyl]-6-methyl-2,5-cyclohexadiene-1,4-dione 81} also inhib-
ited COX-1 at about 10- or more-fold higher concentrations
[53], [118], [148]. Recently, it was shown that i.p. administra-
tion of ardisiaquinone A 74 to rats prevented the ischemia-in-
duced increase in LTB, in the liver with an ID5q = 0.645 mg/kg,

Werz O. Inhibition of 5-Lipoxygenase ... Planta Med 2007; 73: 1331-1357

MD3INAD

1345

This document was downloaded for pe



Table5 Quinones that inhibit 5-LO product synthesis

No. Compound Structure ICs,, intact ICsy, cell-free Plant Ref.
74  ardisiaquinone A o HO\_/j’.\ 5.56 uM =~0.2uM Ardisia sieboldii [146],
A RPN [145]
HC ‘\/( E o-CH,
] OH
o
75a; ardisia- n.d. 03-1uM Ardisia sieboldii [144]
75b; quinones B, D,
75c; E,andF
75d
76  ardisianones n.d. > 80 % inhibition Ardisia japonica [142]
e CH, at 10 uM
O._CH,
i
) o
77; a)thymoquinone a) 0.26 ug/mL;  a) 3 uM; Nigella sativa [149],
78  b) nigellone = carbonyl o 2.3 uM; [148],
polymer of thymoquinone b) 11.9 ug/mL  b)n.d. [63]
o
79  aethiopinone 0.2uM 0.11uM Salvia aethiopsis [150],
o8 !
o
o
80 atractylochromene HO. ~ 0.6 uM n.d. Atractylodes lancea [53]
S
o
81  2-[(2E)-3,7-dimethyl-2,6- 0.2 uM n.d. Atractylodes lancea [53]
octadienyl]-6-methyl-2,5- P P
cyclohexadiene-1,4-dione
o
82  chromenols Ho “ a) 1.9 uM; n.d. Ircina spinosula [147]
b) 7.5 uM
(o] = n H
ajn=5
byn=6
83  maesanin _GH, 0.7 uM n.d. Maesa lanceolata [143]

being slightly superior over AA-861 1 (ID5y = 0.728 mg/kg)
[151].

Pentacyclic triterpenes

In general, triterpenes, consisting of six isoprene units, represent
the basic structure of a large number of biological active com-
pounds including steroid hormones, vitamin D, heart-active
“cardiac glycosides”, steroid alkaloids, bile acids, and saponins.
The pentacyclic triterpenes (PTs) are widely distributed among
plants and, due to the complex biosynthesis including cycliza-
tion of squalene, only higher plants able to carry out this cataly-
sis contain PTs. Many plants containing PTs, in particular bos-
wellic acids (BAs) from Boswellia serrata, have been used as
anti-inflammatory remedies in folk medicine (for review see
[152], [153]).
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In contrast to many other natural compounds that block 5-LO ac-
tivity by chelating and redox actions, the PTs are assumed to act
by a distinct mode, apparently by interference with a (regula-
tory) fatty acid-binding site of 5-LO [154], [155]. The most-recog-
nized PTs that act on 5-LO are BAs, and many studies addressed
the respective molecular interactions (for detailed review see
[153], [156]). BAs with an 11-keto moiety, preferably 3-O-acteyl-
11-keto-B-BA (AKBA 89, Table 6) are of particular interest, and
AKBA 89 is the most efficient derivative with ICs, values 1.5-
15 uM in intact cells [74], [154], [157], [158], [159]. Studies using
isolated 5-LO or other types of cell-free assays showed that AKBA
89 is a direct, non-redox-type 5-LO inhibitor (ICs5, values 8-
50 uM) [74], [154], [159]. The discrepancies in the potency of
AKBA 89 for 5-LO inhibition (1.5-50 uM) reported from different
studies may be due to different experimental settings such as cell
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Table6 Triterpenes and abietic acid that inhibit 5-LO product synthesis

No. Compound Structure ICsy, intact ICsy, cell-free Plant Ref.
84  masticadienolic acid 16.6 uM n.d. Pistacia terebinthus [162]
85; oleanonic acid; 17.3 uM; n.d.; n.d. Pistacia terebinthus; [163],
86  oleanolic acid 16.79 Phillyrea latifolia [164]
87  morolic acid 15.2uM n.d. Pistacia terebinthus [162]
88  astilbic acid 2.1 uM n.d. Astilbe chinensis [161]
89  3-O-acetyl-11-keto-B- CH, 1.5-15uM 8 -50uM Boswellia serrata [154],
boswellic acid i [158],
(74]
90  3-oxo-tirucallic acid Hooc ~15uM 3uM Boswellia serrata [160]
-~ CH,
H,C
91  abietic acid CH, n.d. 29.5 uM (S-LOX!)  Abies normanniana ssp. [165]
equitrojani
CH
CH *
Hooc CH,

type, species and enzyme source (purified 5-LO, crude homoge-
nates). It is obvious that AKBA 89 is more efficient in cell-based
than in cell-free assays, suggesting additional actions in the in-
tact cell, namely pro-oxidant activity that may irreversibly inac-
tivate 5-LO [157]. Interestingly, the PT 3-oxotirucallic acid (3-
oxo-TA 90), also present in B. serrata, is more efficient on cell-
free 5-LO (IC5y = 3 uM), whereas in intact cells 5-LO product syn-
thesis is even elevated at low concentrations, and a significant
higher IC5, value (15 uM) is evident [160].

Besides PTs from Boswellia species, the structurally related astil-
bic acid 88 (lacking the 11-keto group; Table 6) from Astilbe
chinensis blocks 5-LO-dependent LTC, generation in bone mar-
row-derived mast cells with ICsy = 2.1 uM [161], being equipo-
tent to AKBA. Unfortunately, experiments addressing the effec-
tiveness of astilbic acid 88 as a direct 5-LO inhibitor have not
been performed yet. Similarly, the 11-keto-free PTs masticadie-
nolic acid 84, oleanonic acid 85 and morolic acid 87 from
Pistacia terebinthus (L.) [162], [163] or oleanolic acid 86 from
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Table7 Sesquiterpenes that inhibit 5-LO product synthesis

No. Compound Structure ICsy, intact ICsy, cell-free Plant Ref.
92  parthenolide 12uM n.d. Tanacetum parthenium [176]
93  helenalin 9uM n.d. Arnica montana [62]
94  buddledin 50.4 uM n.d. Buddleja spec. [177]
95; miogatrial; n.d.; 7.5 uMm; Zingiber mioga [174]
96  miogadial n.d. 4uM

97  E-isolinaridial 0.42 uM 0.2uM Linaria saxatilis var. glutinosa [38]

98 chamazulene

15uM 10 uM Chamomilla recutita [173]

Phillyrea latifolia (L.) [164] inhibit cellular 5-LO product syn-
thesis with ICs, values 15.2-17.3 (Table 6), but data regarding 5-
LO inhibition in cell-free assays are not available. Finally, the tri-
cyclic diterpenoid abietic acid 91 was found to inhibit soybean
LO (IG5 = 29.5 uM) but the effectiveness on mammalian 5-LO
and cellular LT biosynthesis remains to be determined [165].

It was suggested that AKBA 89 acts at a selective binding site of
5-LO for various PTs that is different from the AA-binding cleft
[155], where certain functional groups (i.e., the 11-keto and C-
4-carboxylic moiety) are essential for 5-LO inhibitory activity
[166]. Although previous reports demonstrated a selectivity of
BAs for 5-LO, we recently showed that AKBA 89 potently sup-
presses 12-LO product formation, with even higher potency in
cell-free assays (ICsq = 15uM) as compared to 5-LO (ICsq =
50 uM) [167]. The direct interaction of AKBA 89 with platelet
12-LO was visualized by a protein fishing approach using immo-
bilized KBA as bait and platelet lysates as protein source, where
12-LO was specifically precipitated [167].

Taken together, PTs carrying a carbocylic group at varying posi-
tions may be effective in suppressing cellular 5-LO product for-
mation. Although 5-LO seemingly possesses a specific PT-bind-
ing site, and BAs (i.e., AKBA 89) as well as 3-oxo-TA 90 directly
inhibit 5-LO catalysis, it should be noted that PTs affect many sig-
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nal transduction pathways (e.g., MAPK, Akt, Ca?*) and effectors
(i.e., reactive oxygen species) [157], [168], [169]. Hence, besides
direct interference with 5-LO, these multiple (intra-)cellular tar-
gets and routes may be affected by PT that eventually governs in-
hibition of 5-LO product synthesis.

Sesquiterpenes

More than 3000 sesquiterpenes that all consist essentially of 3
isoprene units are known and most of them occur as polycycles,
frequently with lactone, aldehyde or ketone functionality. Ses-
quiterpenes have long been recognized as anti-inflammatory
agents being active in vitro and in vivo, and it is proposed that in-
hibition of NF-xB and MAPK are molecular modes of actions (see
[170], [171] and references therein). Chamazulene 98 (Table 7),
an anti-inflammatory sesquiterpene from Chamomilla recutita
(L.), is used to treat inflammatory skin and bowel diseases and
was shown to scavenge hydroxyl radicals and to inhibit lipid per-
oxidation in vitro (ICsy = 2-18 uM) [172], [173]. At similar con-
centrations, chamazulene 98 inhibited LTB, formation in intact
cells and in corresponding cell-free supernatants with IC5, = 15
and 10 uM, respectively [173], whereas the structurally related
sesquiterpene lactone matricin was not effective up to 200 uM.
The most potent sesquiterpene reported thus far is E-isolinari-
dial 97 (Table7), a sesquiterpene dialdehyde from Linaria
saxatilis var. glutinosa that directly acts on 5-LO in cell-free as-
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Table8 Alkaloids that inhibit 5-LO product synthesis

No. Compound Structure ICsy, intact ICsy, cell-free Plant Ref.
99 tryptanthrin 0.15uM n.d. Isatis tinctoria [184]
100 isaindigotone <10uM 0.04 uM Isatis indigotica [185]
101 quinolone alkaloids R = 10-14.6 uM n.d. Evodia rutaecarpa [183]
R=
N7 R R=
! R =
102; chelerythrine; 0.8 uM; n.d. Chelidonium majus [181]
103 sanguinarine 0.4 uM
104 goshuyuamide-II 6.6 uM n.d. Evodia rutaecarpa [182]
o, Vo
N
H N
e \é
105 colchicine CH, <10uM no inhibition Colchicum autumnale [179],
C'g<‘|\|H [180]
(X
ey
.0 CH,

says (ICsp = 0.2uM) as well as in intact neutrophils (IG5, =
0.42 uM) [38]. Although E-isolinaridial 97 was equipotent in sup-
pression of synovial sPLA,, no effects on COX enzymes, NOS or
superoxide generation were evident. Similarly, the related ses-
quiterpene di- and trialdehydes miogadial 96 and miogatrial 95
from Zingiber mioga (Roscoe) inhibited 5-LO in cell-free assays
[174], though less potently (IC5, = 4 and 7.5 uM); unfortunately,
the effectiveness in intact cells was not addressed. Possibly, the
aldehyde groups may form adducts with susceptible thiol or pri-
mary amino moieties that are essential for 5-LO catalysis. Along
these lines, we recently found that the synthetic thiol-reactive
compound U-73122 (an aminosteroid with an electrophilic mal-
eimide group, recognized as PLC inhibitor) potently inhibits 5-LO
(ICso = 30 nM) [175], apparently by covalent interaction with
susceptible cysteine residues (unpublished data).

Among the sesquiterpene lactones, helenalin 93 from Arnica
Montana [62] and parthenolide 92 from Tanacetum parthenium
[176] interfere with 5-LO product synthesis. These agents usually
act by forming covalent bonds via an o-methylene-y-lactone
group with free thiol groups of cysteine residues in their target
enzyme. Whereas for helenalin 93 detailed mechanistic analysis
was performed that indicates a time-dependent inhibitory effect
on 5-LO (ICs, values in homogenates < 30 uM, in intact cells
9 uM), for parthenolide 92 the effectiveness was analyzed solely
in intact cells (ICs, = 12 uM). The sesquiterpene ketone buddle-

din 94, also possessing an exocyclic methylene group, was de-
scribed as moderate blocker of 5-LO activity (ICso = 50.4 uM) in
rat peritoneal leukocytes [177]. Taken together, sesquiterpenes
that inhibit 5-LO product formation encompass highly reactive
compounds (o-methylene-ylactones, polyaldehydes) with anti-
oxidant properties, but also with the ability to covalently modify
susceptible moieties in their target protein, implying direct at-
tack of 5-LO. Since most sesquiterpenes also interfere with other
targets relevant for inflammation including NF-xB, MAPK and in
particular PLA, and COX enzymes the extrapolation of 5-LO inhi-
bition in vitro towards the anti-inflammatory activities in vivo
needs more detailed analysis.

Alkaloids

Although there is substantial evidence for an anti-inflammatory
effectiveness of alkaloids in vivo, only a few studies demonstrat-
ed suppression of 5-LO product synthesis by alkaloids. Colchi-
cine 105 (Table 8) from Colchicum autumnale inhibits microtu-
bule polymerization by binding to tubulin and has long been
used for the treatment of gout and rheumatoid arthritis [178].
Reibmann et al. first showed that colchicine 105 (as well as vin-
blastine) inhibits ionophore-induced formation of LTB, in neu-
trophils, linked to decrements in microtubule numbers [179].
Others confirmed that suppression of 5-LO product synthesis by
colchicine 105 relies on microtubular disruption, but also on ab-
rogation of agonist-induced increase in [CaZ*];, connected to re-
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Table9 Polyacetylenes as arachidonic acid mimetics that inhibit 5-LO product synthesis

No. Compound Structure ICsy, intact ICsy, cell-free Plant Ref.
106; crepenynic acid; CHy 85 uM; n.d. Ixiolaena brevicompta [193]
107 xi ic acid 60 uM
ximenynic aci o0c = u
o,
HC‘OC\/\/\/\/\/\/\/\cHs
108; cis-hexadec-11-ene-7,9- — CH, =5uM n.d. Heisteria accumniata [195]
diynoic acid; P
109 cis-octadec-12-ene-7,9- HOOC 7
diynoic acid
# - CH,
Z
HooC
110 falcarindol CH, 9.4 uM 7 uM Saposhnikovia divaricata [196],
¢ OH [52]
— CH,
HO =
111 panaxynol /CHZ n.d. 2uM Saposhnikovia divaricata [196]
—= CH,
HO —

duced AA release [180]. Importantly, the authors excluded that
colchicine acts directly on 5-LO. Using intact bovine PMNL, the
benzophenanthridine alkaloids sanguinarine 103 and cheler-
ythrine 102 of Chelidonium majus (L.) were shown to inhibit 5-
LO (ICsq = 0.4 and 0.8 uM), apparently acting in a nonredox fash-
ion [181]. However, only cell-based experiments were performed
but no data from cell-free assays are available, and the related
soybean LO-1 was hardly inhibited (ICs, > 75 uM) by these com-
pounds. Therefore, and in view of the manifold actions of these
alkaloids on central signaling molecules (that is, PKC) associated
with 5-LO activation, a direct interference with 5-LO is uncertain.
Similarly, different alkaloids isolated from Evodia rutaecarpa
(Benth.) namely goshuyuamide-II 104 and five alkyl-/alkylene-
quinolone alkaloids reduced 5-LO activity in RBL-1 cells (ICs,
goshuyuamide-II = 6.6 uM) [182] and in neutrophils (quinolone
alkaloids) [183], but direct inhibition of 5-LO in cell-free assays
was not addressed. Two structurally related alkaloids from
Isatis species with a quinazolinone core, tryptanthrin 99 from
I tinctoria [184] and isaindigotone 100 from I. indigotica [185]
have been shown to potently suppress 5-LO in intact neutro-
phils (IC5y = 0.15 and < 10 uM, respectively). Isaindigotone 100
scavenges superoxide released by PMNL and inhibits cell-free
5-LO with an IC5, = 0.04 uM. Both alkaloids also inhibited the
formation of COX products and NOS-1, and tryptanthrin 99 has
proven effective in certain animal models of inflammation
[186], [187].

Polyacetylenes as arachidonic acid mimetics

Short after the discovery of the 5-LO enzyme, various AA deriva-
tives, in particular those with acetylene moieties such as
5,8,11,14-eicosatetraynoic acid (ETYA) [65] and 5,8,11-eicosatriy-
noic acid [188], but also 15-hydro(pero)xy-5,8,11,13-eicosate-
traenoic acid (15-H(P)ETE) [189,190], 5,12-diHETE, or LT-analo-
gues like 5,6-methano-LTA, [191], [192] were found to inhibit 5-
LO activity. Moreover, AA-861 1 [2,3,5-trimethyl-6-(12-hydroxy-
5,10-dodecadiynyl)-1,4-benzoquinone, see above] contains two
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acetylene moieties in addition to the redox-active 1,4-benzoqui-
none structure [67].

A number of linear (poly)acetylenes consisting of C-16 to C-18
chains have been identified from various plants that inhibit 5-
LO with rather moderate efficacy. Crepenynic acid 106 (cis-octa-
dec-9-en-12-ynoic acid; Table9) and ximenynic acid 107 (trans-
octadec-11-en-9-ynoic acid) from Ixiolaena brevicompta contain-
ing only one acetylene moiety inhibited 5-LO in intact leukocytes
with ICsq values of 85 and 60 uM, respectively [193]. Derivatives
containing more than one acetylene group, such as heptadeca-
2E,8E,10E,16-tetraene-4,6-diyne, heptadeca-2E,8Z,10E,16-tetra-
ene-4,6-diyne, heptadeca-2E,8E,16-triene-4,6-diyne-10-ol, and
safynol from Bidens campylotheca Schultz Bip. ssp campylotheca
(Compositae) [194], or 11(S),16(R)-dihydroxy-octadeca-9Z,17-
diene-12,14-diyn-1-yl acetate from Angelica pubescens f. biserrata
[52] are more efficient. Potent derivatives are cis-hexadec-11-
ene-7,9-diynoic acid 108 and cis-octadec-12-ene-7,9-diynoic
acid 109 [195], falcarindol 110 and panaxynol 111 from
Saposhnikoviae [52], [196] that block 5-LO product synthesis
with ICsq values of 2 - 10 uM. All these compounds lack substan-
tial antioxidant activities, and it is assumed that polyacetylenes
bind to the active site of 5-LO, thereby competing with AA as
substrate. Hence, it is not surprising that these compounds inter-
fere with other AA-binding/metabolizing enzymes (i.e. COX and
other LOs) as well.

Diverse compounds suppressing 5-LO product synthesis

Sulfur-containing molecules, e.g., certain cepaenes 114, ajoenes
112 and the thiosulfinate allicin 113 (Table 10) from Allium spe-
cies (i.e., onions and garlic) were found to inhibit 5-LO activity
in cell-based assays (ICso = 0.5-1, 1.5 and 25 uM, respectively),
as well as COX product (TXB, and PGE,) synthesis, and histamine
release [197], [198]. No or only weak antioxidant properties have
been reported for these compounds [199]. Unfortunately, no data
are available demonstrating a direct inhibitory effect on 5-LO,
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Table 10 Diverse compounds that inhibit 5-LO product synthesis

No. Compound Structure ICsy, intact ICsy, cell-free Plant Ref.
112 ajoene ﬁ 1.5uM n.d. Allium sativum [198]
H o S S S g 2O,
113 allicin y C’/A\/S\S/\’/;CHZ 25 uM n.d. Allium sativum [198]
1
114 cepaenes ﬂ R= \\/\GHS 0.5-1umM n.d. Allium cepa [197]
He™ S S:I/S\S’R ~F e,
He < cH
115 polyacetylenes 7.7-11.4uM n.d. Leontopodium alpinum [201]
| o}
[e]
IR ‘
° (o]
N
and analysis of a related allyl sulfide from onion showed only d
poor efficacy in inhibiting purified 5-LO (ICsy = 83 uM) [111]. j:\> % o .
Thus, the molecular mechanisms underlying suppression of 5- HN™ N HN—G |
LO product formation remain to be examined. Extracts of onions " © o - g 5
and garlic suppress inflammatory and allergic reactions in vivo e}
(in animals as well as in human patients), correlating to the con- 116 "?

tent of S-containing compounds [198], [200]. Recently, constitu-
ents (one lignan, one kaurenoate and three bisabolane deriva-
tives) from the root of Leontopodium alpinum (Cass.) were shown
to inhibit LTB, synthesis in ionophore-activated granulocytes
with ICsq values 7.7 - 11.4 uM [201]. No significant effect on COX
activity was observed. Especially the bisabolane derivatives are
remarkable, since the compounds comprise a novel type of struc-
ture that may interfere with 5-LO, however, cell-free assays were
not applied in this study.

Nowadays, the efficient discovery of new lead structures as 5-LO
inhibitors from the plant kingdom applies different strategies in-
cluding ligand-based virtual filtering experiments using phar-
macophore models, docking studies and neural networks [202].
For example, by virtual screening of a natural product collection
and natural-product-derived combinatorial libraries (430 sub-
stances) for potential 5-LO inhibitors grounded on the “similarity
principle”, we identified 18 compounds which had mutual phar-
macophore features with at least one of 43 known 5-LO inhibi-
tors (that served as query structures) [203]. Two new chemo-
types (116 and 117 in Fig.4) strongly inhibited 5-LO in a cell-
based and cell-free assay with ICs, values around 1 and 0.1 uM,
respectively [203], demonstrating the potential of such natural-
product-derived screening libraries for hit and lead structure
identification.

Conclusions

Based on the pivotal pathophysiological role of 5-LO products in
the development and maintenance of common and severe disor-

Fig.4 Chemical structures of natural compounds that inhibit 5-LO
product synthesis. The compounds 116 and 117 were identified by vir-
tual screening of natural-product-derived combinatorial libraries (430
substances) grounded on the “similarity principle”.

ders including bronchial asthma, rheumatoid arthritis, cancer,
and cardiovascular diseases, the pharmacological intervention
with 5-LO product formation is an important task, and accord-
ingly, there is a strong need for efficient and selective 5-LO inhi-
bitors. Although LT receptor antagonists (e.g., montelukast,
pranlukast, zafirlukast) are nowadays frequently used in the
therapy of bronchial asthma, and the synthetic 5-LO inhibitor zi-
leuton has been approved for the treatment of asthma some
years ago, at the moment, no 5-LO inhibitor is currently available
on the market. The failure of many synthetic 5-LO inhibitors to
enter the market have been attributed to the occurrence of se-
vere side effects and the lack of efficacy. The latter point might
be related to the complex regulation of 5-LO product synthesis
in the cell and the influence of 5-LO activation by many co-fac-
tors such as phosphorylation, the redox tone, Ca%* etc.

An enormous number of different plant-derived compounds
from various species have been reported to interfere with 5-LO
product formation. Whereas most studies have addressed the ef-
ficacy of a given test compound in a cell-based assay, consider-
ably less reports have taken into account the molecular mecha-
nisms by investigating a direct interference with 5-LO in cell-
free assays, or even both test systems. Notably, besides direct in-
hibition of 5-LO, reduced 5-LO product synthesis in intact cells
may result from many actions such as general cytotoxicity, inhi-
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bition of LTA, hydrolase or LTC, synthase (if applicable), inhibi-
tion of PLA, and thus AA release, blockade of FLAP, interference
with 5-LO kinases, Ca?*-mobilization, lipid interactions, and 5-
LO translocation/trafficking, as well as altering the cellular re-
dox-tone. In general, it appears that lipophilic, often fatty acid-
like compounds with (i.e., phenols) or without (i.e., triterpenes,
polyacetylenes) reducing properties interfere with 5-LO, and the
majority are phenolic structures including flavonoids, quinones
(that become bio-activated to hydroquinones) hydroxylated cou-
marins, and many other polyphenols. Apparently, the combina-
tion of iron-reducing and iron-chelating features of these pheno-
lic compounds (particularly ortho-dihydroxy moieties) are
responsible for 5-LO inhibition, but still structural aspects play
a role, in particular, prenyl residues or extended alkyl chains
seem to govern the efficacy. Many phenolic compounds (and
plant extracts containing them) are recognized and used as
anti-inflammatory remedies and inhibition of 5-LO product syn-
thesis might be one underlying mode of action. However, the
poor bioavailability and the rapid metabolism and elimination
of polyphenols after oral intake raises doubts regarding their ef-
fectiveness as 5-LO inhibitors in vivo. Also, the low selectivity of
phenolic substances (for example, many inhibit COX, 12-LO and
PLA,) makes it difficult to correlate the 5-LO inhibitory effects in
vitro to an anti-inflammatory action in vivo. Among the non-re-
ducing compounds, the boswellic acids have been intensively
studied, but still, important questions regarding the molecular
mode of action and the contribution of 5-LO inhibition for the in
vivo pharmacology remain open. Similarly, for alkaloids and ses-
quiterpenes that may inhibit 5-LO activity in a non-redox fash-
ion, the molecular interactions with 5-LO catalysis are unclear.
Finally, many of the plant-derived compounds exhibit only a
moderate potency and respective plasma or tissue concentra-
tions reached in patients taking such medication (if known at
all) are often significantly lower.

Altogether, a huge number of studies demonstrating suppression
of 5-LO product synthesis by plant-derived compounds have
been conducted and published, but considerably less investiga-
tions have been performed that provide deeper insights into me-
chanistic interactions of the compounds with 5-LO. Most avail-
able data do not allow final conclusions about the in vivo rele-
vance of 5-LO inhibition with respect to intervention with aller-
gic or inflammatory diseases. Nevertheless, carefully performed
contributions led to the identification of plant-derived com-
pounds that potently interfere with 5-LO activity in intact cells
as well as in cell-free assays. These discoveries encourage the fu-
ture search of plant-derived compounds as 5-LO inhibitors and
provide a suitable basis for pharmaceutical chemists for novel
developments.
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