Thromb Haemost 2008; 100(06): 976-983
DOI: 10.1160/TH08-05-0273
Theme Issue Article
Schattauer GmbH

Integration of non-SMAD and SMAD signaling in TGF-β1-induced plasminogen activator inhibitor type-1 gene expression in vascular smooth muscle cells

Rohan Samarakoon
1   Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, USA
,
Paul J. Higgins
1   Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, USA
› Author Affiliations
Financial support: This study was supported by NIH grant GM57242 to PJH.
Further Information

Publication History

Received: 01 May 2008

Accepted after minor revision: 13 August 2008

Publication Date:
23 November 2017 (online)

Summary

Overexpression of plasminogen activator inhibitor-1 (SER-PINE1, PAI-1), the major physiological inhibitor of pericellular plasmin generation, is a significant causative factor in the progression of vascular disorders (e.g. arteriosclerosis, thrombosis, perivascular fibrosis) as well as a biomarker and a predictor of cardiovascular-disease associated mortality. PAI-1 is a temporal/ spatial regulator of pericellular proteolysis and ECM accumulation impacting, thereby, vascular remodeling, smooth muscle cell migration, proliferation and apoptosis. Within the specific context of TGF-β1-initiated vascular fibrosis and neointima formation, PAI-1 is a member of the most prominently expressed subset of TGF-β1-induced transcripts. Recent findings implicate EGFR/pp60c-src →MEK/ERK1/2 and Rho/ROCK→SMAD2/3 signaling in TGF-β1-stimulated PAI-1 expression in vascular smooth muscle cells. The EGFR is a direct upstream regulator of MEK/ERK1/2 while Rho/ROCK modulate both the duration of SMAD2/3 phosphorylation and nuclear accumulation. E-box motifs (CACGTG) in the PE1/PE2 promoter regions of the human PAI-1 gene, moreover, are platforms for a MAP kinase-directed USF subtype switch (USF-1→USF-2) in response to growth factor addition suggesting that the EGFR→MEK/ERK axis impacts PAI-1 expression, at least partly, through USF-dependent transcriptional controls. This paper reviews recent data suggesting the essential cooperativity among the EGFR→MAP kinase cascade, the Rho/ROCK pathway and SMADs in TGF-β1-initiated PAI-1 expression. The continued clarification of mechanistic controls on PAI-1 transcription may lead to new targeted therapies and clinically-relevant options for the treatment of vascular diseases in which PAI-1 dysregulation is a major underlying pathogenic feature.

 
  • References

  • 1 Kohler HP, Grant PJ. Plasminogen-activator inhibitor type 1 and coronary artery disease. N Engl J Med 2000; 342: 1792-1801.
  • 2 Sobel BE, Taatjes DJ, Schneider DJ. Intramural plasminogen activator inhibitor type-1 and coronary atherosclerosis. Arterioscler Thromb Vasc Biol 2003; 23: 1979-1989.
  • 3 Vaughan DE. PAI-1 and cellular migration: dabbling in paradox. Arterioscler Thromb Vasc Biol 2002; 22: 1522-1523.
  • 4 Petzelbauer E, Springhorn JP, Tucker AM. et al. Role of plasminogen activator inhibitor in the reciprocal regulation of bovine aortic endothelial and smooth muscle cell migration by TGF-β1. Am J Pathol 1996; 149: 923-931.
  • 5 Agirbasli M. Pivotal role of plasminogen-activator inhibitor 1 in vascular disease. Int J Clin Pract 2005; 59: 102-106.
  • 6 DeYoung MB, Tom C, Dichek DA. Plasminogen activator inhibitor type 1 increases neointima formation in balloon-injured rat carotid arteries. Circulation 2001; 104: 1972-1977.
  • 7 Degryse B, Neels JG, Czekay RP. et al. The low density lipoprotein receptor-related protein is a motogenic receptor for plasminogen activator inhibitor-1. J Biol Chem 2004; 279: 22595-22604.
  • 8 Bhoday J, de Silva S, Xu Q. The molecular mechanisms of vascular restenosis: Which genes are crucial?. Curr Vasc Pharmacol 2006; 04: 269-725.
  • 9 Eddy AA, Fogo A. Plasminogen activator inhibitor-1 in chronic kidney disease: evidence and mechanisms of action. J Am Soc Nephrol 2006; 17: 2999-3012.
  • 10 Weisberg AD, Albornoz F, Griffin JP. et al. Pharmacological inhibition and genetic deficiency of plasminogen activator inhibitor-1 attenuates angiotensin II/ salt-induced aortic remodeling. Arterioscler Thromb Vasc Biol 2005; 25: 365-371.
  • 11 Eitzman DT, Westrick RJ, Xu Z. et al. Plasminogen activator inhibitor-1 deficiency protects against atherosclerosis progression in the mouse carotid artery. Blood 2000; 96: 4212-4215.
  • 12 Eitzman DT, McCoy RD, Zheng X. et al. Bleomycin-induced pulmonary fibrosis in transgenic mice that either lack or overexpress the murine plasminogen activator inhibitor-1 gene. J Clin Invest 1996; 97: 232-237.
  • 13 Eren M, Painter CA, Atkinson JB. et al. Age-dependent spontaneous coronary arterial thrombosis in transgenic mice that express a stable form of human plasminogen activator inhibitor-1. Circulation 2002; 106: 491-496.
  • 14 Wang TJ, Gona P, Larson MG. et al. Multiple biomarkers for the prediction of first major cardiovascular events and death. N Engl J Med 2006; 355: 2631-2639.
  • 15 Alessi MC, Juhan-Vague I. PAI-1 and the metabolic syndrome: links, causes, and consequences. Arterioscler Thromb Vasc Biol 2006; 26: 2200-2207.
  • 16 Zhu Y, Farrehi PM, Fay WP. Plasminogen activator inhibitor type 1 enhances neointima formation after oxidative vascular injury in atherosclerosis-prone mice. Circulation 2001; 103: 3105-3110.
  • 17 Ploplis VA, Cornelissen I, Sandoval-Cooper MJ. et al. Remodeling of the vessel wall after copper-induced injury is highly attenuated in mice with a total deficiency of plasminogen activator inhibitor-1. Am J Pathol 2001; 158: 107-117.
  • 18 Prisco D, Fedi S, Antonucci E. et al. Postprocedural PAI-1 activity is a risk marker of subsequent clinical restenosis in patients both with and without stent implantation after elective balloon PTCA. Thromb Res 2001; 104: 181-186.
  • 19 Chen Y, Budd RC, Kelm Jr RJ. et al. Augmentation of proliferation of vascular smooth muscle cells by plasminogen activator inhibitor type 1. Arterioscler Thromb Vasc Biol 2006; 26: 1777-1783.
  • 20 Meilhac O, Ho-Tin-Noé B, Houard X. et al. Pericellular plasmin induces smooth muscle cell anoikis. FASEB J 2003; 17: 1301-1303.
  • 21 Michel JB. Anoikis in the cardiovascular system: known and unknown extracellular mediators. Arterioscler Thromb Vasc Biol 2003; 23: 2146-5214.
  • 22 Chen Y, Kelm Jr RJ, Budd RC. et al. Inhibition of apoptosis and caspase-3 in vascular smooth muscle cells by plasminogen activator inhibitor type-1. J Cell Biochem 2004; 92: 178-188.
  • 23 Rossignol P, Anglès-Cano E, Lijnen HR. Plasminogen activator inhibitor-1 impairs plasminogen activation-mediated vascular smooth muscle cell apoptosis. Thromb Haemost 2006; 96: 665-670.
  • 24 Rossignol P, Lutten A, Martin-Ventura JL. et al. Plasminogen activation: a mediator of vascular smooth muscle cell apoptosis in atherosclerotic plaques. J Thromb Haemost 2006; 04: 664-670.
  • 25 Rossignol P, Ho-Tin-Noe B, Vranckx R. et al. Protease nexin-1 inhibits plasminogen activation-induced apoptosis of adherent cells. J Biol Chem 2004; 279: 10346-10356.
  • 26 Kwaan HC, Wang J, Declerck J. Plasminogen activator inhibitor 1 may promote tumour growth through inhibition of apoptosis. Br J Cancer 2000; 82: 1702-1708.
  • 27 Providence KM, Higgins SP, Mullen A. et al. SER-PINE1 (PAI-1) is deposited into keratinocyte migration ‘trails’ and required for optimal monolayer wound repair. Arch Dermatol Res 2008; 300: 303-310.
  • 28 Al-Fakhri N, Chavakis T, Schmidt-Woll T. et al. Induction of apoptosis in vascular cells by plasminogen activator inhibitor-1 and high molecular weight kininogen correlates with their anti-adhesive properties. J Biol Chem 2003; 384: 423-435.
  • 29 Allen RR, Higgins PJ. Plasminogen activator inhibitor type-1 expression and the pathophysiology of TGF-β1-induced epithelial-to-mesenchymal transition. Recent Res Devel Physiol 2004; 02: 355-366.
  • 30 Vaughan DE. PAI-1 and TGF-β: unmasking the real driver of TGF-β-induced vascular pathology. Arterioscler Thromb Vasc Biol 2006; 26: 679-680.
  • 31 Otsuka G, Agah R, Frutkin AD. et al. Transforming growth factor β1 induces neointima formation through plasminogen activator inhibitor-1-dependent pathways. Arterioscler Thromb Vasc Biol 2006; 26: 737-743.
  • 32 Kutz SM, Higgins CE, Samarakoon R. et al. TGF-β1-induced PAI-1 expression is E box/USF-dependent and requires EGFR signaling. Exp Cell Res 2006; 312: 1093-1105.
  • 33 Boehm JR, Kutz SM, Sage EH. et al. Growth state-dependent regulation of plasminogen activator inhibitor type-1 gene expression during epithelial cell stimulation by serum and transforming growth factor-β1. J Cell Physiol 1999; 181: 96-106.
  • 34 Ruiz-Ortega M, Rodríguez-Vita J, Sanchez-Lopez E. et al. TGF-β signaling in vascular fibrosis. Cardiovasc Res 2007; 74: 196-206.
  • 35 Schiller M, Javelaud D, Mauviel A. TGF-β-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. J Dermatol Sci 2004; 35: 83-92.
  • 36 Grotendorst GR, Duncan MR. Individual domains of connective tissue growth factor regulate fibroblast proliferation and myofibroblast differentiation. FASEB J 2005; 19: 729-738.
  • 37 Samarakoon R, Higgins S, Higgins CE. et al. Cooperative Rho/Rock and EGFR signaling in modulating TGF-beta induced PAI-1 expression in vascular smooth muscle cells. J Mol Cell Cardiol 2008; 44: 527-538.
  • 38 Otsuka G, Stempien-Otero A, Frutkin AD. et al. Mechanisms of TGF-?1-induced intimal growth. Plasminogen-independent activities of plasminogen activator inhibitor-1 and heterogeneous origin of intimal cells. Circ Res 2007; 100: 1300-1307.
  • 39 Khan R, Agrotis A, Bobik A. Understanding the role of transforming growth factor-β1 in intimal thickening after vascular injury. Cardiovasc Res 2007; 04: 223-234.
  • 40 Prud’homme GJ. Pathobiology of transforming growth factor beta in cancer, fibrosis and immunologic disease, and therapeutic considerations. Lab Invest 2007; 87: 1077-1091.
  • 41 Pennison M, Pasche B. Targeting transforming growth factor-β signaling. Curr Opin Oncol 2007; 19: 579-585.
  • 42 Flanders KC. Smad3 as a mediator of the fibrotic response. Int J Exp Pathol 2004; 85: 47-64.
  • 43 Liang A, Wu F, Tran K. et al. Characterization of a small molecule PAI-1 inhibitor, ZK4044. Thromb Res 2005; 115: 341-350.
  • 44 Izuhara Y, Takahashi S, Nangaku M. et al. Inhibition of plasminogen activator inhibitor-1: its mechanism and effectiveness on coagulation and fibrosis. Arterioscler Thromb Vasc Biol 2008; 28: 672-677.
  • 45 Baxi S, Crandall DL, Meier TR. et al. Dose-dependent thrombus resolution due to oral plaminogen activator inhibitor (PAI)-1 inhibition with tiplaxtinin in a rat stenosis model of venous thrombosis. Thromb Haemost 2008; 99: 749-758.
  • 46 Kutz SM, Higgins PJ. Plasminogen activator inhibitor type-1 expression targeting: new therapeutic approaches to regulate tumor growth and angiogenesis. Recent Res Devel Cell Sci 2004; 01: 1-10.
  • 47 Kaikita K, Fogo AB, Ma L. et al. Plasminogen activator inhibitor-1 deficiency prevents hypertension and vascular fibrosis in response to long-term nitric oxide synthase inhibition. Circulation 2001; 104: 839-844.
  • 48 Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 2004; 84: 767-801.
  • 49 Singh NN, Ramji DP. The role of transforming growth factor-β in atherosclerosis. Cytokine Growth Factor Rev 2006; 07: 487-499.
  • 50 Samarakoon R, Higgins CE, Higgins SP. et al. Plasminogen activator inhibitor type-1 gene expression and induced migration in TGF-β1-stimulated smooth muscle cells is pp60c-src/MEK-dependent. J Cell Physiol 2005; 204: 236-246.
  • 51 Ishizawar R, Parsons SJ. c-Src and cooperating partners in human cancer. Cancer Cell 2004; 06: 209-214.
  • 52 Sato K, Sato A, Aoto M. et al. c-Src phosphorylates epidermal growth factor receptor on tyrosine 845. Biochem Biophys Res Commun 1995; 215: 1078-1087.
  • 53 Sato K, Sato A, Aoto M. et al. Site-specific association of c-Src with epidermal growth factor receptor in A431 cells. Biochem Biophys Res Commun 1995; 210: 844-851.
  • 54 Kim JT, Joo CK. Involvement of cell-cell interactions in the rapid stimulation of Cas tyrosine phosphorylation and Src kinase activity by transforming growth factor-β1. J Biol Chem 2002; 277: 31938-31948.
  • 55 Sato K, Kimoto M, Kakumoto M. et al. Adaptor protein Shc undergoes translocation and mediates upregulation of the tyrosine kinase c-Src in EGF-stimulated A431 cells. Genes Cells 2000; 05: 749-764.
  • 56 Sato K, Nagao T, Kakumoto M. et al. Adaptor protein Shc is an isoform-specific direct activator of the tyrosine kinase c-Src. J Biol Chem 2002; 277: 29568-29576.
  • 57 Sato K, Nagao T, Iwasaki T. et al. Src-dependent phosphorylation of the EGF receptor Tyr-845 mediates Stat-p21waf1 pathway in A431 cells. Genes Cells 2003; 08: 995-1003.
  • 58 Tice DA, Biscardi JS, Nickles AL, Parsons SJ. Mechanism of biological synergy between cellular Src and epidermal growth factor receptor. Proc Natl Acad Sci USA 1999; 96: 1415-1420.
  • 59 Boerner JL, Biscardi JS, Silva CM. et al. Transactivating agonists of the EGF receptor require Tyr 845 phosphorylation for induction of DNA synthesis. Mol Carcinog 2005; 44: 262-273.
  • 60 Shimokawa H, Takeshita A. Rho-kinase is an important therapeutic target in cardiovascular medicine. Arterioscler Thromb Vasc Biol 2005; 25: 1767-1775.
  • 61 Loirand G, Guerin P, Pacaud P. Rho kinases in cardiovascular physiology and pathophysiology. Circ Res 2006; 98: 322-334.
  • 62 Deindl E. Arteriogenesis; A focus on signal transduction cascades and transcription factors. Thromb Haemost 2007; 98: 940-943.
  • 63 Sawada N, Itoh H, Ueyama K. et al. Inhibition of rho-associated kinase results in suppression of neointimal formation of balloon-injured arteries. Circulation 2000; 101: 2030-2033.
  • 64 Rikitake Y, Oyama N, Wang CY. et al. Decreased perivascular fibrosis but not cardiac hypertrophy in ROCK1+/− haploinsufficient mice. Circulation 2005; 112: 2959-2965.
  • 65 Nakakuki T, Ito M, Iwasaki H. et al. Rho/Rho-kinase pathway contributes to C-reactive protein-induced plasminogen activator inhibitor-1 expression in endothelial cells. Arterioscler Thromb Vasc Biol 2005; 25: 2088-2093.
  • 66 Rikitake Y, Liao JK. Rho-kinase mediates hyperglycemia-induced plasminogen activator inhibitor-1 expression in vascular endothelial cells. Circulation 2005; 111: 3261-3268.
  • 67 Takeda K, Ichiki T, Tokunou T. et al. Critical role of Rho-kinase and MEK/ERK pathways for angiotensin II-induced plasminogen activator inhibitor type-1 gene expression. Arterioscler Thromb Vasc Biol 2001; 21: 868-873.
  • 68 Chen S, Crawford M, Day RM. et al. RhoA modulates Smad signaling during transforming growth factor-β-induced smooth muscle differentiation. J Biol Chem 2006; 281: 1765-1770.
  • 69 Kita T, Hata Y, Kano K. et al. Transforming growth factor-β2 and connective tissue growth factor in proliferative vitreoretinal diseases: possible involvement of hyalocytes and therapeutic potential of Rho kinase inhibitor. Diabetes 2007; 56: 231-238.
  • 70 Derynck R, Zhang Y. Smad-dependent and Smad-independent pathways in TGF-β family signaling. Nature 2003; 425: 577-584.
  • 71 Dennler S, Itoh S, Vivien D. et al. Direct binding of Smad3 and Smad4 to critical TGF-β-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J 1998; 17: 3091-3100.
  • 72 Hua X, Liu X, Ansari DO. et al. Synergistic cooperation of TFE3 and smad proteins in TGF-β-induced transcription of the plasminogen activator inhibitor-1 gene. Genes Devel 1998; 12: 3084-3095.
  • 73 Itoh S, ten Dijke P. Negative regulation of TGF-β receptor/Smad signal transduction. Curr Opin Cell Biol 2007; 19: 176-184.
  • 74 Lin X, Duan X, Liang YY. et al. PPM1A functions as a Smad phosphatase to terminate TGFbeta signaling. Cell 2006; 125: 915-928.
  • 75 Wilkins-Port CE, Higgins CE, Freytag J. et al. PAI-1 is a critical upstream regulator of the TGF-β1/EGF-induced invasive phenotype in mutant p53 human cutaneous squamous cell carcinoma. J Biomed Biotech 2007; 02: 85208.
  • 76 Higgins PJ. TGF-beta1-stimulated p21 ras -ERK signaling regulates expression of the angiogenic SERPIN PAI-1. Recent Res Devel Biochem 2006; 07: 31-45.
  • 77 Allen RR, Qi L, Higgins PJ. Upstream stimulatory factor regulates E box-dependent PAI-1 transcription in human epidermal keratinocytes. J Cell Physiol 2005; 203: 156-165.
  • 78 Qi L, Higgins PJ. Use of chromatin immunoprecipitation to identify E box-binding transcription factors in the promoter of the growth state-regulated human PAI-1 gene. Recent Res Devel Mol Biol 2003; 01: 1-12.
  • 79 Qi L, Allen RR, Lu Q, Higgins CE, Garone R, Staiano-Coico L, Higgins PJ. PAI-1 transcriptional regulation during the G0→G1 transition in human epidermal keratinocytes. J Cell Biochem 2006; 99: 495-507.
  • 80 White LA, Bruzdzinski C, Kutz SM. et al. Growth state-dependent binding of USF-1 to a proximal promoter E box element in the rat plasminogen activator inhibitor type 1 gene. Exp Cell Res 2000; 260: 127-135.
  • 81 Malyanker UM, Hanson R, Schwartz SM. et al. Upstream stimulatory factor 1 regulates osteopontin expression in smooth muscle cells. Exp Cell Res 1999; 250: 535-547.
  • 82 Bidder M, Shao JS, Charlton-Kachigian N. et al. Osteopontin transcription in aortic vascular smooth muscle cells is controlled by glucose-regulated upstream stimulatory factor and activator protein-1 activities. J Biol Chem 2002; 277: 44485-44496.
  • 83 Shoulders CC, Naoumova RP. USF1 implicated in the aetiology of familial combined hyperlipidaemia and the metabolic syndrome. Trends Mol Med 2004; 10: 362-365.
  • 84 Piccolo S. p53 regulation orchestrates the TGF-β response. Cell 2008; 133: 767-769.
  • 85 Cordenonsi M, Dupont S, Maretto S. et al. Links between tumor suppressors: p53 is required for TGF-β gene responses by cooperating with Smads. Cell 2003; 113: 301-314.
  • 86 Cordenonsi M, Montagner M, Adorno M. et al. Integration of TGF-β and Ras/MAPK signaling through p53 phosphorylation. Science 2007; 315: 840-843.
  • 87 Kunz C, Pebler S, Otte J. et al. Differential regulation of plasminogen activator and inhibitor gene transcription by the tumor suppressor p53. Nucleic Acids Res 1995; 25: 3710-3727.
  • 88 Riley T, Sontag E, Chen P. et al. Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 2008; 09: 402-412.
  • 89 Shetty S, Shetty P, Idell S. et al. Regulation of plasminogen activator inhibitor-1 expression by tumor suppressor protein p53. J Biol Chem 2008; 283: 19570-19580.
  • 90 Dupont S, Zacchigna L, Adorno M. et al. Convergence of p53 and TGF-β signaling networks. Cancer Lett 2004; 213: 129-138.
  • 91 Fisher F, Goding CR. Single amino acid substitutions alter helix-loop-helix protein specificity for bases flanking the core CANNTG motif. EMBO J 1992; 11: 4103-4109.
  • 92 Simonsson M, Kanduri M, Grontoos E. et al. The DNA binding activitues of Smad2 and Smad3 are regulated by coactivator-mediated acetylation. J Biol Chem 2006; 281: 39870-39880.
  • 93 Tu AW, Luo K. Acetylation of Smad2 by the co-activator p300 regulates activin and transforming growth factor β response. J Biol Chem 2007; 282: 21187-21196.
  • 94 Das F, Ghosh-Choudhury N, Nenkatesan B, et al. Akt kinase taragets association of CBP with SMAD 3 to regulate TGFβ-induced expression of plasminogen activator inhibitor-1. J Cell Physiol 2008; 214: 513-527.
  • 95 Antonson P, Jakobsson T, Almlof T. et al. RAP250 is a coactivator in the transforming growth factor β signaling pathway that interacts with Smad2 and Smad3. J Biol Chem 2008; 283: 8995-9001.
  • 96 ten Dijke P, Hill CS. New insights into TGF-β-Smad signaling. Trends Biochem Sci 2004; 29: 265-273.
  • 97 Riccio A, Pedone PV, Lund LR. et al. Transforming growth factor β1-responsive element: closely associated binding sites for USF and CCAAT-binding transcription factor-nuclear factor I in the type 1 plasminogen activator inhibitor gene. Mol Cell Biol 1992; 12: 1846-1855.
  • 98 Dimova EY, Kietzmann T. Cell type-dependent regulation of the hypoxia-responsive plasminogen activator inhibitor-1 gene by upstream stimulatory factor-2. J Biol Chem 2006; 28: 2999-3005.
  • 99 Fink T, Kazlauskas A, Poellinger L. et al. Identification of a tightly regulated hypoxia-response element in the promoter of human plasminogen activator inhibitor-1. Blood 2002; 99: 2077-2083.
  • 100 Kietzmann T, Samoylenko A, Roth U. et al. Hypoxia-inducible factor-1 and hypoxia response elements mediate the induction of plasminogen activator inhibitor-1 gene expression by insulin in primary rat hepatocytes. Blood 2003; 101: 907-914.
  • 101 Dimova EY, Moller U, Herzig S. et al. Transcriptional regulation of plasminogen activator inhibitor-1 expression by insulin-like growth factor-1 via MAP kinases and hypoxia-inducible factor-1 in HepG2 cells. Thromb Haemost 2005; 93: 1176-1184.
  • 102 Dimova EY, Jakubowska MM, Kietzmann T. CREB binding to the hypoxia-inducible factor-1 responsive elements in the plasminogen activator inhibitor-1 promoter mediates the glucagon effect. Thromb Haemost 2007; 98: 296-303.
  • 103 Bendall AJ, Molloy PL. Base preferences for DNA binding by the bHLH-Zip protein USF: effects of MgCl2 on specificity and comparison with binding of Myc family members. Nucleic Acids Res 1994; 22: 2801-2810.
  • 104 Littlewood TD, Evans GI. Helix-loop-helix proteins. Protein Profiles 1995; 02: 612-702.
  • 105 Ismail PM, Lu T, Sawadogo M. Loss of USF transcriptional activity in breast cancer cell lines. Oncogene 1999; 18: 5582-5591.
  • 106 Samoylenko A, Roth U, Jungermann K. et al. The upstream stimulatory factor-2a inhibits plasminogen activator inhibitor-1 gene expression by binding to a promoter element adjacent to the hypoxia-inducible factor-1 binding site. Blood 2001; 97: 2657-2666.
  • 107 Grinberg AV, Kerppola T. Both Max and TFE3 cooperate with Smad proteins to bind the plasminogen activator inhibitor-1 promoter, but they have opposite effects on transcriptional activity. J Biol Chem 2003; 278: 11227-11236.
  • 108 Galibert MD, Carreira S, Goding CR. The Usf-1 transcription factor is a novel target for the stress-responsive p38 kinase and mediates UV-induced Tyrosinase expression. EMBO J 2001; 20: 5022-5031.
  • 109 Weibaecher KN, Motyckova C, Huber WE. et al. Linkage of M-CSF signaling to Mitf, RFE3, and the osteoclast defect in Mitf(mi/mi) mice. Mol Cell 2001; 08: 749-758.
  • 110 Cheung E, Mayr P, Coda-Zabetta F. et al. DNA-binding activity of the transcription factor upstream stimulatory factor 1 (USF-1) is regulated by cyclin-dependent phosphorylation. Biochem J 1999; 344: 145-152.
  • 111 Providence KM, White LA, Tang J. et al. Epithelial monolayer wounding stimulates binding of USF-1 to an E-box motif in the plasminogen activator inhibitor type 1 gene. J Cell Sci 2002; 115: 3767-3777.
  • 112 Qyang Y, Luo X, Lu T. et al. Cell-type-dependent activity of the ubiquitous transcription factor USF in cellular proliferation and transcriptional activation. Mol Cell Biol 1999; 19: 1508-1517.
  • 113 Xing W, Danilovich N, Sairam MR. Orphan receptor chicken ovalbumin upstream promoter transcription factors inhibit steroid factor-1, upstream stimulatory factor, and activator protein-1 activation of ovine follicle-stimulating hormone receptor expression via composite ciselements. Biol Reprod 2002; 66: 1656-1666.
  • 114 McMurry MR, McCance DJ. Human papilloma virus type 16 E6 activates TERT gene transcription through induction of c-MYC and release of USF-mediated repression. J Virol 2003; 77: 9852-9861.
  • 115 Luo X, Sawadogo M. Functional domains of the transcription factor USF2: atypical nuclear localization signals and context-dependent transcriptional activation domains. Mol Cell Biol 1996; 16: 1367-1375.
  • 116 Carter RS, Ordentlich P, Kadesch T. Selective utilization of basic helix-loop-helix-leucine zipper proteins at the immunoglobulin heavy-chain enhancer. Mol Cell Biol 1997; 17: 18-23.
  • 117 Huang Y, Border WA, Yu L. et al. A PAI-1 mutant, PAI-1R, slows progression of diabetic nephropathy. J Am Soc Nephrol 2008; 19: 329-338.