Anti-Arthritic Activity of a Lipophilic Woad (*Isatis tinctoria*)

Extract

Maria-Carmen Recio¹
Miguel Cerdá-Nicolás²
Matthias Hamburger³
José-Luis Ríos¹

Affiliation

¹ Department of Pharmacology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
² Department of Pathology, Faculty of Medicine, University of Valencia, Valencia, Spain
³ Institute of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland

Correspondence

Prof. José-Luis Ríos
Department of Pharmacology
Faculty of Pharmacy
University of Valencia
Av. Vicent Andrés Estellés, s/n.
46100 Burjassot
Valencia
Spain
Phone/Fax: +34-96-354-4973
E-mail: riosjl@uv.es
Fig. S1 Morphological study of paws. Radiography of the tibiotarsal joints (A1-4), and haematoxylin-eosin-stained section of paws (×40) (B1-4): A1 Blank group: without arthritis. A2 Control group: severe inflammation, bone resorption and joint erosion. A3 DCM decreased joint damage and soft tissue swelling in rat footpad. A4 Indomethacin-treated group. B1 Blank group: no inflammation. B2 Control group: severe inflammation, with cysts in tissue; bone: severe inflammation with articular erosion and destruction, bone destruction, osteoid, osteoclasts, articular. B3 DCM group: reduction of oedema in tissue and articular
inflammation, less bone and cartilage erosion, and small cysts. B4 Indomethacin group: clear reduction of oedema and bone and cartilage damage.

Fig. S2 Immunohistochemical study of arthritis induced by adjuvant. A Control group: A1 Cells with cytoplasmatic presence of COX-1 (arrow). A2 Cells expressing COX-2 (arrow). B DCM-treated group: B1 COX 1: increase of number and intensity of cells with cytoplasmatic presence of COX-1 (arrow). B2 Small decrease of COX-2 expression but slight increase of number of cells (arrow).