Supporting Information

Constituents of *Acacia nilotica* Delile with Novel Kinase Inhibitory Activity

Authors

Augustine A. Ahmadu\(^1\)*, Abdulkarim Agunu\(^2\), Thi-Ngoc-Dung Nguyen\(^3\), Blandine Baratte\(^3\), Béatrice Foll-Josselin\(^3\), Sandrine Ruchaud\(^3\), Benoît Serive\(^3\)*, Stéphane Bach\(^3\)*

Affiliations

\(^1\)Department of Pharmaceutical and Medicinal Chemistry, Kaduna State University, Kaduna, Nigeria
\(^2\)Department of Pharmacognosy and Drug development, University of Ilorin, Ilorin, Nigeria
\(^3\)Sorbonne Universités, UPMC Univ. Paris 06, CNRS USR3151, Protein Phosphorylation and Human Disease Laboratory, KISSf screening facility, Station Biologique, Roscoff, France

Correspondence

Dr. Augustine Ahmadu
Department of Pharmaceutical and Medicinal Chemistry
Faculty of Pharmaceutical Sciences
Kaduna State University
Kaduna
Nigeria
Phone: +23 480 370 335 05
ahmadu2001@yahoo.com

These authors share senior authorship.
Isolation

The ethyl acetate extract (3 g), which was the most active against the protein kinases investigated, was subjected to silica gel column chromatography (40-63 µm; 50 × 3 cm) and eluted with a gradient of dichloromethane-methanol: 100:0, 99:1, 98:2, 97:3, 96:4, 95:5, 90:10, 80:20, 70:30, 60:40, 30:70, 10:90, and finally methanol (100%). Fractions of 50 mL were collected and monitored by TLC (ethyl acetate-chloroform 3:2, ethyl acetate-chloroform-methanol-water 15:8:4:1 and ethyl acetate-methanol-water 100:16.5:13.5). Fractions eluted with 5% methanol in dichloromethane (23-25), which showed a similar single spot on TLC using solvent system I and II, were pooled together to give compound 1 (11 mg). Fractions 27-29, also eluted with 5% methanol in dichloromethane, were subjected to gel filtration on Sephadex LH-20 in methanol to give compound 2 (13 mg).

Structural characterization

NMR spectra were recorded in CD$_3$OD on Bruker Avance 500 MHz and 125 MHz spectrophotometers for 1H and 13C-NMR, respectively, using TMS as the internal standard. UV spectra were recorded on a Pye-Unicam UV-Visible spectrophotometer. IR was performed on a Shimadzu spectrophotometer, while ES1-MS was recorded using an LCMS 1100 Agilent Finnigan LCQ DecaxP thermoquest. TLC was performed on a precoated TLC silica aluminum backed plate (0.2 mm) Silicycle, while pressurized column chromatography was carried out on silica gel G (200-400 mesh) Silicycle. MS analysis was performed employing an ESI-LTQ-orbitrap Discovery XL mass spectrometer (Thermo Scientific) connected to an Accela UHPLC.
system (Thermo Scientific). The UHPLC system was equipped with an autosampler, a vacuum degasser, a binary pump, and a temperature-controlled column. An ACQUITY UPLC BEH C18 (2.1 × 100 mm, 1.7 µm) reversed-phase column (Waters Corp.) was used for the analysis. The system was run in a binary gradient solvent mode consisting of 0.1% (v/v) formic acid/water (solvent A) and acetonitrile (solvent B). Sample analysis was carried out in both positive (ES+) and negative (ES-) ion modes. The flow rate was 0.4 mL/min. A gradient method of 32 min was used for metabolomic analysis as follows: 0 to 24 min: 95% A: 5% B; 24 to 28 min: 5% A: 95% B; 28-32 min: 95% A: 5% B.

Protein kinase inhibitory studies

The chloroform, ethyl acetate, and n-butanol fractions and purified compounds (1 and 2) were screened against a panel of diseased-related protein kinases. Kinase activity was assayed in appropriate buffer with either protein or peptide as the substrate in the presence of 15 µM \[\gamma^{33}\text{P}]\text{ATP} (3000 Ci/mmol; 10 mCi/mL) in a final volume of 30 µL following the assay described in [1]. Controls were performed with appropriate dilutions of dimethyl sulphoxide. Full-length kinases were used unless specified otherwise. Peptide substrates were obtained from Proteogenix.

Buffers

(A) 10 mM MgCl\(_2\), 1 mM EGTA, 1 mM DTT, 25 mM Tris-HCl, pH 7.5, 50 µg/mL heparin.
(B) 60 mM β-glycerophosphate, 30 mM p-nitrophenyl-phosphate, 25 mM MOPS (pH 7), 5 mM EGTA, 15 mM MgCl₂, 1 mM DTT, 0.1 mM sodium orthovanadate.

(D) 25 mM MOPS, pH 7.2, 12.5 mM β-glycerophosphate, 25 mM MgCl₂, 5 mM EGTA, 2 mM EDTA, 0.25 mM DTT.

(H) MOPS 25 mM, pH 7.5, 10 mM MgCl₂.

(K) Tris 50 mM, pH 7.5, 20 mM MgCl₂, 2 mM MnCl₂.

(R) 1.67 mM MOPS, pH 7.2, 0.83 mM β-glycerophosphate, 1.33 mM MgCl₂, 0.83 mM MnCl₂, 0.33 mM EGTA, 0.13 mM EDTA, 16.67 μg/mL BSA, 0.017 mM DTT.

HsCDK2/Cyclin A (cyclin-dependent kinase 2, human; kindly provided by Dr. A. Echalier-Glazer, Leicester, UK) was assayed in buffer A (+0.15 mg/mL of BSA +0.23 mg/mL of DTT) with 0.8 μg/μL of histone H1 as the substrate.

HsCDK9/Cyclin T (human, recombinant, expressed by baculovirus in Sf9 insect cells) was assayed in buffer A (+0.15 mg/mL of BSA +0.23 mg/mL of DDT) with 0.27 μg/μL of peptide YSPTSPYSPTSPSYSPTSPSKKKK as the substrate.

HsCDK5/p25 (human, recombinant, expressed in bacteria) was assayed in buffer B, with 0.8 μg/μL of histone H1 as the substrate.
HsPIM1 (human proto-oncogene, recombinant, expressed in bacteria) was assayed in buffer B, 0.8 µg/µL of histone H1 (Sigma #H5505) as the substrate.

HsHaspin-kd (human, kinase domain, amino acids 470 to 798, recombinant, expressed in bacteria) was assayed in buffer H with 0.007 µg/µL of histone H3 (1-21) peptide ARTKQTARKSTGGKAPRKQLA as the substrate.

HsRIPK3 (human, recombinant, expressed by baculovirus in Sf9 insect cells) was assayed in buffer R with 0.1 µg/µL of MBP as the substrate.

HsAuroraB (human, recombinant, expressed by baculovirus in Sf9 insects cells, Signal Chem, product #A31-10G) was assayed in buffer D with 0.2 µg/µL of MBP as the substrate.

SscGSK-3α,β (glycogen synthase kinase 3, porcine brain, native, affinity purified) was assayed in buffer A (+0.15 mg/mL of BSA +0.23 mg/mL of DTT) with 0.010 µg/µL of GS-1 peptide, a GSK-3 selective substrate (YRRAAVPPPSLSRHSSPHQSpEDEEE, “Sp” stands for phosphorylated serine).

SscCK1 δ/ε (casein kinase 1 δ/ε, porcine brain, native, affinity purified) was assayed in buffer B with 0.022 µg/µL of peptide RRKHAAILGSpAYSITA as the CK1-specific substrate).
RnDYRK1A-kd (*Rattus norvegicus*, amino acids 1 to 499 including the kinase domain, recombinant, expressed in bacteria, DNA vector provided by Dr. W. Becker, Aachen, Germany) was assayed in buffer A (+0.5 mg/mL of BSA +0.23 mg/mL of DTT) with 0.033 µg/µL of peptide KKISGRLSPIMTEQ as the substrate.

*Mm*CLK1 (from *Mus musculus*, recombinant, expressed in bacteria) was assayed in buffer A (+0.15 mg/mL of BSA + 0.23 mg/mL of DTT) with 0.027 µg/µL of peptide GRSRSRSRSRSR as the substrate.

*Pf*GSK-3 (from *Plasmodium falciparum*, recombinant, expressed in bacteria) was assayed in buffer A (+0.15 mg/mL of BSA +0.23 mg/mL of DTT) with 0.010 µg/µL of GS-1 peptide, a GSK-3 selective substrate (YRRAAVPPPSLISRHSPPHQSpEDEEE, “Sp” stands for phosphorylated serine).

*Ld*TLK (tousled-like kinase, from *Leishmania donovani*, recombinant, expressed in bacteria) was assayed in buffer K with 0.6 µg/µL of casein dephosphorylated from bovine milk (Sigma #C4032) as the substrate.

*Lm*CK1 (from *Leishmania major*, recombinant, expressed in bacteria was assayed in buffer B (adjusted at pH 8) with 0.028 µg/µL of peptide RRKHAAIGSpAYSITA as the CK1-specific substrate.
To validate the kinase assay, model inhibitors were used for each tested enzyme.

GSK’872 (#530389, purity ≥ 98%, Calbiochem) for HsRIPK3.

Barasertib (AZD1152-HQPA, #S1147, purity 97.31%, Selleckchem) for HsAuroraB.

Staurosporine from Streptomyces sp. (#S5921, purity ≥ 95%, Sigma-Aldrich) for SscCK1, LmCK1 and LdTLK.

Indirubin-3’-oxime (#I0404, purity ≥ 98%, Sigma-Aldrich) for SscGSK-3α,β, HsPIM1, CDKs, RnDYRK1A-kd, and MmCLK1.

CHR-6494 (#SML0648, purity ≥ 98%, Sigma-Aldrich) for HsHaspin-kd.

3-Amino-4-arylthieno[2,3-b]pyridine derivative called “5m” for PfGSK-3 [2].

Supplemental references
