Supplementary Material

Cytotoxicity and Antibacterial Potential of Halogenated Chamigrenes from Malaysian Red Alga, Laurencia majuscule

Authors
Takashi Kamada1, 2, Chin-Soon Phan1, Tatsufumi Okino3, Charles Santhanaraju Vairappan1

Affiliations
1 Laboratory of Natural Products Chemistry, Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Sabah, Malaysia
2 Laboratory of Natural Products Chemistry, Department of Materials and Life Science, Faculty of Science and Technology, Shizuoka Institute of Science and Technology, Fukuroi, Shizuoka, Japan
3 Graduate School of Environmental Science, Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan

Correspondence
Prof. Dr. Charles Santhanaraju Vairappan
Laboratory of Natural Products Chemistry
Institute for Tropical Biology and Conservation
Universiti Malaysia Sabah

Fig. 1S 1H-1H COSY and selective HMBC correlations of 1 and 2.
Fig. 2 1H NMR spectrum of 1 in CDCl$_3$ (600 MHz).
Fig. 3S 13C NMR spectrum of 1 in CDCl$_3$ (150 MHz).
Fig. 4S HSQC spectrum of 1 in CDCl₃.
Fig. 5S 1H-1H COSY spectrum of 1 in CDCl$_3$.
Fig. 6S HMBC spectrum of 1 in CDCl₃.
Fig. 7S NOESY spectrum of 1 in CDCl₃.
Fig. 8S 1H NMR spectrum of 2 in CDCl$_3$ (600 MHz).
Fig. 9S 13C NMR spectrum of 2 in CDCl$_3$ (150 MHz).
Fig. 10S HSQC spectrum of 2 in CDCl$_3$.
Fig. 11S 1H-1H COSY spectrum of 2 in CDCl$_3$.
Fig. 12S HMBC spectrum of 2 in CDCl₃.
Fig. 13S NOESY spectrum of 2 in CDCl$_3$.
Fig. 14S 1H NMR spectrum of 7 in CDCl$_3$ (600 MHz).
Fig. 15S 13C NMR spectrum of 7 in CDCl$_3$ (150 MHz).