Supporting Information

An Efficient Method for the Preparation of N-Formamides using Propylphosphonic Anhydride (T3P®)

VenuKandulaa,b, Ramakrishna Gudipatia, Anindita Chatterjeeb, Satyanarayana Yennama & Manoranjan Beheraa*

a Medicinal Chemistry Department, GVK Biosciences Pvt. Ltd., Plot No. 28, IDA, Nacharam, Hyderabad, 500076, A.P. India

b Department of Chemistry, K L E F, Vaddeswaram, Guntur, Andhra Pradesh, India, 522502

Contents

1. General 2

2. General Experimental procedure for compounds 2a-2m 2-4

3. General Experimental procedure for compounds 2n-2v 5-6

4. Analytical Data 7-70
1. General

Dry solvents were purchased from chemical suppliers and used without further purification. Analytical thin-layer chromatography (TLC) was performed on commercially available Merck TLC Silica gel 60 F254. Silica gel column chromatography was performed on silica gel 60 (spherical 100-200 µm). IR spectra were recorded on Perkin-Elmer FT/IR-4000 using KBr. 1H NMR spectra were recorded on Varian-400 (400 MHz) spectrometer. Chemical shifts of 1H NMR spectra were reported relative to tetramethylsilane. 13C NMR spectra were recorded on Varian-400 (100 MHz) spectrometer. Chemical shifts of 13C NMR spectra were reported to relative to CDCl₃ (77.16) and DMSO-d₆ (39.5). Splitting patterns were reported as s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad.

Experimental Procedure for the Preparation of N-phenyl formamide (2a): To a solution of compound 1a (200 mg, 2.15 mmol) in dichloromethane (5 ml) and HCO$_2$H (118 mg, 2.58 mmol) was added at 0°C then added Et$_3$N (651 mg, 6.45 mmol) and T3P (1.36 g, 4.3 mmol) then reaction mixture was stirred at RT for 10h. The progress of the reaction was monitored by TLC (30% EtOAc/petroleum ether). After completion of the reaction, water (50 ml) was added to the reaction mixture and extracted with di ethyl ether thrice. Combined the organic layers, washed with water, brine and dried over Na$_2$SO$_4$ concentrated u/vacc gave the pure compound 2a (247 mg, 95%) as brown semi solid. IR (KBr, cm$^{-1}$): 3271, 2921, 1683, 1600, 1543, 1440, 1270, 754; 1H NMR (400 MHz, DMSO-d$_6$): δ = 9.7 (bs, 1H); 8.3 (bs, 1H); 7.5 (bs, 2H); 7.2 (t, 2H), 7.0 (t, 1H); MS (EI): m/z 122 (M+1,100).

N-(2-chlorophenyl)formamide (2b): Yield (227 mg, 93%) as White solid, m.p. 80-82 °C. IR (KBr, cm$^{-1}$): 3252, 2901, 2366, 1702, 1665, 1541, 1396, 1299, 1036, 738; 1H NMR (400 MHz, DMSO): δ = 9.43 (bs, 1H); 8.38 (s, 1H); 7.90 (bs, 1H), 7.46-7.44 (d, J=6 Hz, 1H); 7.31-7.28 (t,J=12 Hz, 1H); 7.16-7.13 (t, J=12 Hz, 1H). MS (EI): m/z 156 (M+1,100).

N-(2-methoxyphenyl)formamide (2c): Yield (220 mg, 90%) as pale brown solid. m.p. 83-85 °C, IR (KBr, cm$^{-1}$): 3253, 3221, 2921, 2333, 1662, 1531, 1451, 1384, 1245, 1144, 1028, 738; 1H NMR (400 MHz, DMSO): δ = 9.12 (bs, 1H); 8.36 (s, 1H); 7.90 (bs, 1H), 7.07-7.02 (m, J=6 Hz, 2H); 7.40-6.87 (t, J=11.6 Hz, 1H); 6.90-6.87 (t, J=11.6, 1H); 3.78 (s, 3H). MS (EI): m/z 152 (M+1,100).
N-(3-methoxy-4-methylphenyl)formamide (2d): Yield (224 mg, 93%) as tan colored solid, m.p. 100-102°C; IR (KBr, cm⁻¹): 3453, 2921, 2387, 1725, 1646, 1383, 1294, 1229, 1123, 1031, 774; ¹H NMR (400 MHz, DMSO): δ = 9.66 (bs, 1H); 8.33 (bs, 1H); 7.02 (m, 3H); 3.75 (s, 3H); 2.09 (s, 3H); MS (EI): m/z 166 (M+1,100).

N-(4-methylpyridin-2-yl)formamide (2e): Yield (224 mg, 89%) as brown solid, m.p. 70-72°C; IR (KBr, cm⁻¹): 3445, 2922, 1682, 1617, 1569, 1429, 1383, 1346, 1249, 799; ¹H NMR (400 MHz, DMSO): δ = 10.06 (s, 1H); 8.83 (bs, 1H); 8.10 (s, 1H), 7.25 (bs, 1H); 6.27 (s, 1H), 2.28 (s, 3H); MS (EI): m/z 137 (M+1,100).

N-(isothiazol-4-yl)formamide (2f): Yield (217 mg, 85%) as brown liquid, m.p. 57-59°C; IR (KBr, cm⁻¹), 3226, 3050, 2888, 2228, 1854, 1682, 1547, 1400, 1333, 1214, 1109, 786; ¹H NMR (400 MHz, DMSO): δ = 10.80 (s, 1H); 8.91 (s, 1H), 8.59 (s, 1H), 8.29 (s, 1H), MS (EI): m/z 129 (M+1,100).

N-(2,3-difluorophenyl)formamide (2g): Yield (214 mg, 88%) as white solid, m.p. 92-94°C; IR (KBr, cm⁻¹), 3231, 3181, 3066, 1679, 1619, 1533, 1271, 1201, 1003, 774; ¹H NMR (400 MHz, DMSO): δ = 8.34 (s, 1H); 8.92-8.96 (m, 1H); 6.99-7.16 (m, 3H); MS (EI): m/z 158 (M+1,100).

N-(4-methoxy-2-methylphenyl)formamide (2h): Yield (224 mg, 93%) as Black solid, m.p. 90-92°C; IR (KBr, cm⁻¹): 3472, 3243, 2844, 1657, 1550, 1391, 1288, 1104, 1045, 873, 762; ¹H NMR (400 MHz, DMSO): δ = 9.06 (bs, 1H); 8.21 (s, 1H); 7.41 (bs, 1H), 6.77 (s, 1H); 6.72-6.70 (t, J=6.8, 1H); 3.72 (s, 3H), 2.18 (s, 3H); MS (EI): m/z 166 (M+1,100).
N-(3-fluorophenyl)formamide (2i): Yield (212 mg, 85%) as Pale brown solid, m.p. 71-73°C; IR (KBr, cm⁻¹): 3418, 3221, 2921, 2577, 2066, 1684, 1608, 1488, 1395, 1284, 1139, 1041, 777; ¹H NMR (400 MHz, DMSO): δ = 9.96 (bs, 1H); 8.34 (bs, 1H); 7.48-7.22 (m, 3H); 6.85-6.82 (m, 1H); MS (EI): m/z 140 (M+1,100)

N-(3-(trifluoromethoxy)phenyl)formamide (2j): Yield (203 mg, 88%) as Pale brown solid, m.p. 72-74°C; IR (KBr, cm⁻¹): 3298, 2893, 2478, 2029, 1615, 1554, 1270, 980, 879, 795; ¹H NMR (400 MHz, DMSO): δ = 10.10 (bs, 1H); 8.32 (bs, 1H); 7.39-7.65 (m, 3H); 6.99-7.01 (m, 1H); MS (EI): m/z 204 (M-1,100)

N-(3-(difluoromethoxy)phenyl)formamide (2k): Yield (218 mg, 93%) as Pale brown solid, m.p. 58-60°C; IR (KBr, cm⁻¹): 3266, 2894, 1703, 1673, 1612, 1443, 1383, 1292, 1212, 1035; ¹H NMR (400 MHz, DMSO): δ = 9.94 (bs, 1H); 8.34 (bs, 1H); 7.31-7.41 (m, 3H); 6.90-7.20 (m, 1H); 6.85 (d, J=5.2 Hz, 1H); MS (EI): m/z 188 (M-1,100)

N-(2,4,6-trifluorophenyl)formamide (2l): Yield (211 mg, 89%) as Off white solid, m.p. 112-114°C; IR (KBr, cm⁻¹): 3251, 3060, 2910, 1679, 1442, 1243, 1121, 1042, 873, 694; ¹H NMR (400 MHz, DMSO): δ = 9.46 (bs, 1H); 8.27 (s, 1H); 7.13 (d, J=6.8 Hz, 2H); MS (EI): m/z 176 (M+1,100)
N-(2,5-dimethylphenyl)formamide (2m): Yield (209 mg, 85%) as Off white solid, m.p. 234-236°C, IR (KBr, cm−1): 3248, 2910, 1662, 1533, 1399, 1274, 1191, 1035, 814, 732; 1H NMR (400 MHz, DMSO-d6): δ =9.14(bs, 1H), 8.28(s, 1H), 7.06(d, J=6 Hz, 1H), 6.87(d, J=6 Hz 1H), 2.24(s, 3H), 2.16(s, 3H); MS (EI): m/z 150 (M+1,100).

N-(2-bromo-4,6-difluorophenyl)formamide (2n): Yield (212 mg, 93%) as ash colored solid, m.p. 136-138°C, IR (KBr, cm−1): 3262, 2895, 1703, 1538, 1398, 1209, 1131, 873, 753; 1H NMR (400 MHz, DMSO-d6): δ =9.87(bs, 1H), 8.33(s, 1H), 8.24(bs, 1H), 7.43(t, J=17.2 Hz, 1H), MS (EI): m/z 238 (M,100).

N-(2-iodophenyl)formamide (2o): Yield (201 mg, 89%) as Off White solid, m.p. 92-94°C, IR (KBr, cm−1): 3446, 3225, 1519, 1388, 1276, 1150, 1013, 880, 744; 1H NMR (400 MHz, DMSO-d6): δ =9.14(bs, 1H), 8.35(s, 1H), 7.87(d, J=6.4 Hz 1H), 7.65(bs, 1H), 7.43(t, J=17.2 Hz, 1H), MS (EI): m/z 248 (M+1, 100).

N-(2-(trifluoromethoxy)phenyl)formamide (2p): Yield (173 mg, 75%) as Light green solid, m.p. 58-60°C, IR (KBr, cm−1): 3279, 2917, 1698, 1676, 1607, 1529, 1452, 1252, 1177, 748; 1H NMR (400 MHz, DMSO): δ =9.66(bs, 1H), 8.37(s, 1H), 8.00(bs,1H), 7.32-7.35(m, 2H), 7.21(t, J=11.6 Hz, 1H), 6.94(t, J=5.6 Hz, 1H); MS (EI): m/z 206 (M+1, 100).
N-(pyridin-2-yl)formamide (2q): Yield (202 mg, 78%) as Brown solid, m.p.168-170 °C., IR (KBr, cm−1):3396, 2961, 1681, 1595, 1492, 1388, 1199, 1046, 765; 1H NMR (400 MHz, DMSO): δ =7.89 (d, J=3.2 Hz, 2H), 7.32(t, J=11.2 Hz 2H), 6.45 (t, J=10.4 Hz, 2H); MS (EI): m/z 123 (M+1, 100).

N-(4-(trifluoromethoxy)phenyl)formamide (2r): Yield (208 mg, 90%) as Brown liquid, m.p. 123-125 °C., IR (KBr, cm−1): 3279, 2917, 1676, 1607, 1529, 1452, 1252, 1177, 748; 1H NMR (400 MHz, DMSO): 9.66(bs, 1H), 8.33(bs, 1H), 7.63(bs, 2H), 7.22(d, J=7.6 Hz, 1H); MS (EI): m/z 204 (M-1,100).

N-(4-fluorophenyl)formamide (2s): Yield (230 mg, 92%) as Pale brown slid, m.p. 280-282 °C., IR (KBr, cm−1): 3200, 2924, 2716, 1881, 1740, 1650, 1519, 1328, 1158, 1094, 1038, 829, 597; 1H NMR (400 MHz, DMSO): 9.79 (bs, 1H), 8.27 (bs, 1H), 7.53(bs, 2H), 7.10 (d, J=6.8 Hz, 2H); MS (EI): m/z 140 (M+1,100).

N-(1H-pyrazol-3-yl)formamide (2t): Yield (295 mg, 74%) as brown colored solid, m.p. 181-183 °C.; IR (KBr, cm−1):3396, 2961, 2106, 1687, 1596, 1492, 1388, 1299, 1199, 1046, 765; 1H NMR (400 MHz, DMSO): 12.37 (bs, 1H), 10.5 (bs, 1H), 8.66 (bs, 1H), 7.62 (d, J=9.2 Hz, 1H)), 5.99 (bs, 1H); MS (EI): m/z 112 (M+1,100).

N-(naphthalen-1-yl)formamide (2u): Yield (227 mg, 95%) as light violet solid, m.p. 138-140 °C. ; IR (KBr, cm−1):3225, 2875, 1932, 1656, 1537, 1385, 1286, 1151, 846, 791, 558; 1H NMR (400 MHz, DMSO): δ = 10.01 (bs, 1H); 8.5 (s, 1H); 8.12 (d, J=6 Hz, 1H), 7.92 (t, J=5.6 Hz, 1H); 7.74 (d, J=6.4, 1H); 7.56-7.44 (m, 3H); MS (EI): m/z 172 (M+1,100)
N-(4-methoxyphenyl)formamide(2v): Yield (220 mg, 90%) as Black color solid, m.p. 89-91°C., IR (KBr, cm\(^{-1}\)): 3427, 2923, 2387, 1702, 1608, 1506, 1382, 1250, 1175, 1027, 830. \(^1 \)H NMR (400 MHz, DMSO): \(\delta = 9.57 \) (bs, 1H); 8.20 (bs, 1H); 7.32 (d, J=10.8 Hz, 2H), 6.87 (d, J=6.8 Hz, 2H); 3.72 (s, 3H). MS (EI): \(m/z \) 152 (M+1,100).

References:

Date of Analysis: 1/24/2017 5:11:12 PM Injection Vol: 0.100uL
Acq. Method: RND-FA-3.5mm
Sample Name: GVK-VK-007-113

RND-FA-3.5 MIN.M
Column: ACQUITY UPLC BEH C18 (50mmx2.1mm, 1.7um)
Mobile Phase: B1: 0.1% FA IN WATER A1: 0.1% FA IN ACN
Gradient: Time (min) /%A1: 0/2, 0.4/2, 2.8/98, 3.4/98, 3.41/2, 3.5/2
Column Flow Rate: 0.6 mL/min
Column Temperature: 60°C

<table>
<thead>
<tr>
<th>Peak</th>
<th>RT</th>
<th>Area</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.34</td>
<td>2411.165</td>
<td>99.520</td>
</tr>
<tr>
<td>2</td>
<td>1.42</td>
<td>11.442</td>
<td>0.472</td>
</tr>
</tbody>
</table>

[Graph of chromatogram with peaks labeled 1 and 2, along with corresponding retention times and areas]
Sample Name: GVK-VK-007-NE-125-F

Date of Analysis: 2/14/2017 12:40:12 AM
Injection Vol: 0.300uL

Acq. Method: RND-FA-3.5mins
Instrument ID: ANL-MCL5-LCM

Column: ACQUITY UPLC BEH C18 (50mmx2.1mm, 1.7μm)
Mobile Phase: B1: 0.1% FA IN WATER A1: 0.1%FA IN ACN
Gradient: Time (min) /%A1: 0/2, 0.4/2, 2.8/98,3.4/98,3.41/2,3.5/2
Column Flow Rate: 0.6 ml/min
Column Temperature: 60°C

<table>
<thead>
<tr>
<th>Peak</th>
<th>RT (min)</th>
<th>Area</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>No1</td>
<td>1.23</td>
<td>2.742</td>
<td>0.160</td>
</tr>
<tr>
<td>No2</td>
<td>1.26</td>
<td>3.045</td>
<td>0.178</td>
</tr>
<tr>
<td>No3</td>
<td>1.55</td>
<td>1659.823</td>
<td>99.204</td>
</tr>
<tr>
<td>No4</td>
<td>1.66</td>
<td>3.211</td>
<td>0.187</td>
</tr>
<tr>
<td>No5</td>
<td>1.68</td>
<td>1.663</td>
<td>0.097</td>
</tr>
<tr>
<td>No6</td>
<td>1.69</td>
<td>1.009</td>
<td>0.059</td>
</tr>
<tr>
<td>No7</td>
<td>1.70</td>
<td>1.973</td>
<td>0.115</td>
</tr>
</tbody>
</table>

Analysed by:
GVK BIOSCIENCES PVT. LTD.
MEDICINAL CHEMISTRY LABORATORY - ANALYTICAL RESEARCH
LCMS REPORT

Date of Analysis: 2/16/2017 12:56:04 AM Injection Vol: 0.300uL
Acq. Method: RND-FA-3.5nnm Instrument ID: ANL-MCL5-LCMS-
Sample Name: GVK-VK-007-NF-126-1

Column: ACQUITY UPLC BEH C18 (50mmx2.1mm, 1.7um)
Mobile Phase: B1: 0.1 % FA IN WATER A1: 0.1%FA IN ACN
Gradient: Time (min) /%A1: 0/2, 0.4/2, 2.8/98,3.4/98,3.41/2,3.5/2
Column Flow Rate: 0.6 ml/min
Column Temperature: 60°C

<table>
<thead>
<tr>
<th>Peak</th>
<th>RT</th>
<th>Area</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.48</td>
<td>2603.079</td>
<td>99.516</td>
</tr>
<tr>
<td>2</td>
<td>1.54</td>
<td>12.657</td>
<td>0.484</td>
</tr>
</tbody>
</table>

Analysed by:
GVR BIOSCIENCES PVT. LTD.
MEDICINAL CHEMISTRY LABORATORY - ANALYTICAL RESEARCH
LCMS REPORT

Date of Analysis: 2/10/2017 8:10:08 AM
Injection Vol: 0.100 µL
Acq. Method: RND-FA-3.5min
Sample Name: GVK-VK-007-MF-131

RND-FA-3.5 MIN.M
Column: ACQUITY UPLC BEH C18 (50mmx2.1mm, 1.7µm)
Mobile Phase: B1: 0.1 % FA IN WATER A1: 0.1%FA IN ACN
Gradient: Time (min) /%A1: 0/2, 0.4/2, 2.8/38, 3.4/38, 3.41/2, 3.5/2
Column Flow Rate: 0.6 ml/min
Column Temperature: 60°C

<table>
<thead>
<tr>
<th>Peak</th>
<th>RT</th>
<th>Area</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.16</td>
<td>15.375</td>
<td>0.847</td>
</tr>
<tr>
<td>2</td>
<td>1.24</td>
<td>2.903</td>
<td>0.160</td>
</tr>
<tr>
<td>3</td>
<td>1.33</td>
<td>4.051</td>
<td>0.223</td>
</tr>
<tr>
<td>4</td>
<td>1.67</td>
<td>1767.224</td>
<td>97.288</td>
</tr>
<tr>
<td>5</td>
<td>1.77</td>
<td>25.866</td>
<td>1.424</td>
</tr>
<tr>
<td>6</td>
<td>1.84</td>
<td>1.066</td>
<td>0.059</td>
</tr>
</tbody>
</table>

Analysed by:
Date of Analysis: 2/15/2017 3:00:33 PM
Injection Vol: 0.300uL
Acq. Method: RMD-Fa-3.5mm
Instrument ID: ANL-MCLS-LCMS-001
Sample Name: GVK-VK-007-NF-135

Column: ACQUITY UPLC BEH C18 (50mmx2.1mm, 1.7um)
Mobile Phase: B1: 0.1 % FA IN WATER A1: 0.1%FA IN ACN
Gradient: Time (min) /%A1: 0/2, 0.4/2, 2.8/98, 3.4/98, 3.41/2, 3.5/2
Column Flow Rate: 0.6 ml/min
Column Temperature: 60°C

<table>
<thead>
<tr>
<th>Pea</th>
<th>RT</th>
<th>Area</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10.42</td>
<td>50.904</td>
<td>1.910</td>
</tr>
<tr>
<td>2</td>
<td>10.66</td>
<td>10.440</td>
<td>0.392</td>
</tr>
<tr>
<td>3</td>
<td>10.66</td>
<td>4.442</td>
<td>0.167</td>
</tr>
<tr>
<td>4</td>
<td>10.68</td>
<td>9.907</td>
<td>0.372</td>
</tr>
<tr>
<td>5</td>
<td>10.71</td>
<td>2.604</td>
<td>0.098</td>
</tr>
<tr>
<td>6</td>
<td>1.02</td>
<td>2586.332</td>
<td>97.064</td>
</tr>
</tbody>
</table>

Analysed by:
GVR BIOSCIENCES FVT. LTD.
MEDICINAL CHEMISTRY LABORATORY - ANALYTICAL RESEARCH
LCMS REPORT

Vial position: E1-C-08
Date of Analysis: 2/10/2017 8:14:49 AM
Injection Vol: 0.100uL
Acq. Method: PND-FA-3.5mnns
Sample Name: GVR-VK-007-MP-132
Instrument ID: ANL-MCL5-LCMS-001

Method Details:
- **Column:** ACQUITY UPLC BEH C18 (50mmx2.1mm, 1.7um)
- **Mobile Phase:** B1: 0.1% FA IN WATER
 B2: 0.14%FA IN ACN
- **Gradient:** Time (min) /%A1: 0/2, 0.4/2, 2.8/98, 3.4/38, 3.41/2, 3.5/2
- **Column Flow Rate:** 0.6 ml/min
- **Column Temperature:** 60°C

![Graph](image)

<table>
<thead>
<tr>
<th>Peak</th>
<th>RT</th>
<th>Area</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.76</td>
<td>2530.177</td>
<td>98.243</td>
</tr>
<tr>
<td>2</td>
<td>0.91</td>
<td>6.422</td>
<td>0.249</td>
</tr>
<tr>
<td>3</td>
<td>0.93</td>
<td>4.627</td>
<td>0.180</td>
</tr>
<tr>
<td>4</td>
<td>0.95</td>
<td>4.304</td>
<td>0.157</td>
</tr>
<tr>
<td>5</td>
<td>0.98</td>
<td>11.922</td>
<td>0.463</td>
</tr>
<tr>
<td>6</td>
<td>1.17</td>
<td>4.646</td>
<td>0.190</td>
</tr>
<tr>
<td>7</td>
<td>1.20</td>
<td>1.184</td>
<td>0.046</td>
</tr>
<tr>
<td>8</td>
<td>1.33</td>
<td>1.338</td>
<td>0.052</td>
</tr>
<tr>
<td>9</td>
<td>1.40</td>
<td>3.456</td>
<td>0.134</td>
</tr>
<tr>
<td>10</td>
<td>1.43</td>
<td>1.074</td>
<td>0.071</td>
</tr>
<tr>
<td>11</td>
<td>1.49</td>
<td>5.802</td>
<td>0.225</td>
</tr>
</tbody>
</table>

Analysed by:

P.S. Page 1 of 2
GVR BIOSCIENCES PVT. LTD.
MEDICINAL CHEMISTRY LABORATORY - ANALYTICAL RESEARCH
LCMS REPORT

Date of Analysis: 2/6/2017 11:20:15 AM
Injection Vol: 0.300uL
Acq. Method: RND-FA-3.5mis
Instrument ID: ANL-MOLS-LCMS-001
Sample Name: GVR-VK-007-NF-123

RND-FA-3.5 MIN.M
Column: ACQUITY UPLC BEH C18 (50mmx2.1mm, 1.7um)
Mobile Phase: B1: 0.1 % FA IN WATER A1: 0.15%FA IN ACN
Gradient: Time (min) /%A1: 0/2, 0.4/2, 2.8/98, 3.4/98, 3.41/2, 3.5/2
Column Flow Rate: 0.6 ml/min
Column Temperature: 60°C

CHART

Data File: 215.4 Ref=off (2017/FEB/PRO517024A9513D - 2017/FEB/PRO58LANK-06622017-06.3)

- Peaks
- RT | Area | Area %
- 1 | 0.93 | 65.449 | 2.793
- 2 | 1.41 | 1.152 | 0.049
- 3 | 1.46 | 21.17.194 | 90.363
- 4 | 1.56 | 141.059 | 6.020
- 5 | 1.69 | 10.141 | 0.774

Analysed by:

Page 1 of 2
Date of Analysis: 2/7/2017 9:13:47 AM Injection Vol: 2.000µL
Acq. Method: RMD-FA-3.5mms Instrument ID: ANL-MCL5-LCMS-001
Sample Name: GVK-VK-007-NP-120

Column: ACQUITY UPLC BEH C18 (50mmx2.1mm, 1.7µm)
Mobile Phase: B1: 0.1% FA IN WATER A1: 0.1%PA IN ACN
Gradient: Time (min) /%A1: 0/2, 0.4/2, 2.8/98, 3.4/98, 3.41/2, 3.5/2
Column Flow Rate: 0.6 ml/min
Column Temperature: 60°C

<table>
<thead>
<tr>
<th>Peak</th>
<th>Ret</th>
<th>Area</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.98</td>
<td>283.132</td>
<td>5.003</td>
</tr>
<tr>
<td>2</td>
<td>1.47</td>
<td>5072.120</td>
<td>89.632</td>
</tr>
<tr>
<td>3</td>
<td>1.60</td>
<td>255.090</td>
<td>4.561</td>
</tr>
<tr>
<td>4</td>
<td>1.70</td>
<td>9.006</td>
<td>0.173</td>
</tr>
<tr>
<td>5</td>
<td>2.01</td>
<td>35.669</td>
<td>0.630</td>
</tr>
</tbody>
</table>

Date of Analysis: 2/8/2017 7:18:07 PM
Injection Vol: 0.3000uL
Acq. Method: RMD-FA-3.5mm
Instrument ID: AHL-MC15-LCMS-001
Sample Name: GVK-VK-007-130

RMD-FA-3.5 MIN.M
Column: ACQUITY UPLC BEH C18 (50mmx2.1mm, 1.7um)
Mobile Phase: B: 0.1% FA IN WATER A: 0.1% FA IN ACN
Gradient: Time (min) /%A: 0/2, 0.4/2, 2.8/88, 3.4/98.3.41/2, 3.5/2
Column Flow Rate: 0.6 ml/min
Column Temperature: 60°C

<table>
<thead>
<tr>
<th>Peak</th>
<th>RT (min)</th>
<th>Area</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.06</td>
<td>2.899</td>
<td>0.131</td>
</tr>
<tr>
<td>2</td>
<td>1.12</td>
<td>3.197</td>
<td>0.145</td>
</tr>
<tr>
<td>3</td>
<td>1.48</td>
<td>2.591</td>
<td>0.136</td>
</tr>
<tr>
<td>4</td>
<td>1.76</td>
<td>3.923</td>
<td>0.178</td>
</tr>
<tr>
<td>5</td>
<td>1.79</td>
<td>1.033</td>
<td>0.047</td>
</tr>
<tr>
<td>6</td>
<td>1.85</td>
<td>2179.537</td>
<td>98.791</td>
</tr>
<tr>
<td>7</td>
<td>2.00</td>
<td>1.896</td>
<td>0.086</td>
</tr>
<tr>
<td>8</td>
<td>2.01</td>
<td>2.035</td>
<td>0.092</td>
</tr>
<tr>
<td>9</td>
<td>2.14</td>
<td>4.544</td>
<td>0.206</td>
</tr>
<tr>
<td>10</td>
<td>2.61</td>
<td>1.216</td>
<td>0.055</td>
</tr>
<tr>
<td>11</td>
<td>2.64</td>
<td>1.816</td>
<td>0.082</td>
</tr>
</tbody>
</table>

Analysed by:
Column: ACQUITY UPLC BEH C18 (50mmx2.1mm, 1.7m)
Mobile Phase: B1: 0.1% FA IN WATER A1: 0.1%FA IN ACN
Gradient: Time (min) %A1: 0/2, 0.4/2, 2.8/96, 3.4/98, 3.41/2, 3.5/2
Column Flow Rate: 0.6 ml/min
Column Temperature: 60°C

<table>
<thead>
<tr>
<th>Peak</th>
<th>RT</th>
<th>Area</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.43</td>
<td>7.247</td>
<td>0.601</td>
</tr>
<tr>
<td>2</td>
<td>1.48</td>
<td>1.106</td>
<td>0.092</td>
</tr>
<tr>
<td>3</td>
<td>1.64</td>
<td>1197.699</td>
<td>99.307</td>
</tr>
</tbody>
</table>
Date of Analysis: 2/28/2017
Injection Vol: 0.300uL
Sample Name: GVR-MK-009-11

Column: ACQUITY UPLC BEH C18 (50mmx2.1mm, 1.7um)
Mobile Phase: B1: 0.1% FA IN WATER
A1: 0.1% FA IN ACN
Gradient: Time (min) /%A1: 0/2, 0.4/2, 2.8/98, 3.4/98, 3.41/2, 3.5/2
Column Flow Rate: 0.6 ml/min
Column Temperature: 60°C

<table>
<thead>
<tr>
<th>Peak</th>
<th>RT</th>
<th>Area</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.37</td>
<td>1020.555</td>
<td>99.473</td>
</tr>
<tr>
<td>2</td>
<td>1.44</td>
<td>5.409</td>
<td>0.527</td>
</tr>
</tbody>
</table>
Date of Analysis: 2/22/2017 2:28:35 AM
Injection Vol: 0.300uL
Acq. Method: RND-FA-3.5mms
Instrument ID: ANL-MCL5-LCMS-001
Sample Name: GVK-MR-009-7

Column: ACQUITY UPLC BEH C18 (50mmx2.1mm, 1.7µm)
Mobile Phase: B1: 0.1% FA IN WATER
A1: 0.1%FA IN ACN
Gradient: Time (min)
B1: 0/2, 0.4/2, 2.0/98, 3.4/98, 3.4/2, 3.5/2
Column Flow Rate: 0.6 ml/min
Column Temperature: 60°C

<table>
<thead>
<tr>
<th>Peak</th>
<th>RT</th>
<th>Area</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.22</td>
<td>10.445</td>
<td>0.549</td>
</tr>
<tr>
<td>2</td>
<td>1.62</td>
<td>24.250</td>
<td>1.275</td>
</tr>
<tr>
<td>3</td>
<td>1.67</td>
<td>185.500</td>
<td>98.116</td>
</tr>
<tr>
<td>4</td>
<td>1.78</td>
<td>1.122</td>
<td>0.059</td>
</tr>
</tbody>
</table>
49

GVR BIOSCIENCES PVT. LTD.
MEDICINAL CHEMISTRY LABORATORY - ANALYTICAL RESEARCH
HPLC REPORT

Date of Analysis: 2/22/2017
Injection Vol: 0.300uL
Acq. Method: RND-FA-3.5mins
Instrument ID: ANL-MC15-ICMS-001
Sample Name: GVR-RK-009-14

RND-FA-3.5 MIN.M
Column: ACQUITY UPLC BEH C18 (50mmx2.1mm, 1.7um)
Mobile Phase: B1: 0.1% FA IN WATER A1: 0.1%FA IN ACN
Gradient: Time (min) /%A1: 0/2, 0.4/2, 2.8/98, 3.4/98, 3.41/2, 3.5/2
Column Flow Rate: 0.6 mL/min
Column Temperature: 60°C

![Graph](image_url)

<table>
<thead>
<tr>
<th>Peak</th>
<th>RT</th>
<th>Area</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.60</td>
<td>3.883</td>
<td>0.732</td>
</tr>
<tr>
<td>2</td>
<td>1.64</td>
<td>521.935</td>
<td>98.366</td>
</tr>
<tr>
<td>3</td>
<td>1.73</td>
<td>3.432</td>
<td>0.647</td>
</tr>
<tr>
<td>4</td>
<td>1.82</td>
<td>1.246</td>
<td>0.235</td>
</tr>
</tbody>
</table>

Analysed by:

Page 1 of 2
52

GVK BIOSCIENCES PVT. LTD.
MEDICINAL CHEMISTRY LABORATORY - ANALYTICAL RESEARCH
LCMS REPORT

Vial position : Pl-D-04
Date of Analysis : 2/22/2017 1:04:42 AM Injection Vol : 0.300uL
Acq. Method : HNE-PR-3.5mins Instrument ID : ANL-MCL5-LCMS-001
Sample Name : GVK-PK-009-6

HNE-FA-3.5 MIN.M
Column: ACQUITY UPLC BEH C18 (50mmx2.1mm, 1.7um)
Mobile Phase: B1: 0.1 % FA IN WATER A1: 0.1%FA IN ACN
Gradient: Time (min) /%A1: 0/2, 0.4/2, 2.8/98,3.4/98,3.41/2,3.5/2
Column Flow Rate: 0.6 mL/min
Column Temperature: 60°C

<table>
<thead>
<tr>
<th>Peak</th>
<th>RT (min)</th>
<th>Area</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.50</td>
<td>5.692</td>
<td>0.434</td>
</tr>
<tr>
<td>2</td>
<td>1.53</td>
<td>1.299</td>
<td>0.099</td>
</tr>
<tr>
<td>3</td>
<td>1.77</td>
<td>13.456</td>
<td>1.026</td>
</tr>
<tr>
<td>4</td>
<td>1.81</td>
<td>1290.939</td>
<td>98.441</td>
</tr>
</tbody>
</table>
MS Spectrum

[Graph showing a molecular structure with labels 17.9, 20.9, 27.9, 13.1, 17.9, 20.9, 27.9.]

Max: 342.64

2p
UV Chromatogram

<table>
<thead>
<tr>
<th>RT</th>
<th>Peak Area</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.15</td>
<td>34530.37</td>
<td>5.47</td>
</tr>
<tr>
<td>6.48</td>
<td>55143.07</td>
<td>7.78</td>
</tr>
<tr>
<td>1.45</td>
<td>7055.15</td>
<td>0.40</td>
</tr>
<tr>
<td>1.57</td>
<td>7004.56</td>
<td>0.36</td>
</tr>
<tr>
<td>1.62</td>
<td>3045.38</td>
<td>0.41</td>
</tr>
<tr>
<td>1.75</td>
<td>7835.15</td>
<td>0.59</td>
</tr>
<tr>
<td>2.08</td>
<td>6978.49</td>
<td>0.55</td>
</tr>
<tr>
<td>2.21</td>
<td>8088.98</td>
<td>0.44</td>
</tr>
<tr>
<td>2.39</td>
<td>10116.78</td>
<td>0.63</td>
</tr>
<tr>
<td>2.43</td>
<td>5096.48</td>
<td>0.36</td>
</tr>
<tr>
<td>2.66</td>
<td>6214.55</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Operator: Thermo Scientific
Instrument Name: UA
Page 1 of 1
Thursday, February 23, 2017, 15:11:40
Vial position: Pl-B-04

Date of Analysis: 2/28/2017 6:12:17 PM Injection Vol: 0.300uL
Acq. Method: EMD-FA-3.5ms Instrument ID: AML-MCL5-LCMS-001
Sample Name: GVK-VK-007-MF-143

EMD-FA-3.5 MIN.M
Column: ACQUITY UPLC BEH C18 (50mmx2.1mm, 1.7um)
Mobile Phase: B1: 0.1% FA IN WATER A1: 0.1%FA IN ACN
Gradient: Time (min) /%A1: 0/2, 0.4/2, 2.8/36, 3.4/96, 3.41/2, 3.5/2
Column Flow Rate: 0.6 mL/min
Column Temperature: 60°C

<table>
<thead>
<tr>
<th>Pea</th>
<th>RT</th>
<th>Area</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.33</td>
<td>10.072</td>
<td>0.414</td>
</tr>
<tr>
<td>2</td>
<td>1.41</td>
<td>2415.192</td>
<td>99.546</td>
</tr>
<tr>
<td>3</td>
<td>1.48</td>
<td>5.823</td>
<td>0.240</td>
</tr>
</tbody>
</table>
Vial position : P2-B-01

Date of Analysis : 2/28/2017 11:02:56 PM Injection Vol : 0.300uL

Sample Name : GVR-RX-009-12

RND-FA-3.5 MIN M

Column: ACQUITY UPLC BEH C18 (50mmx2.1mm, 1.7nm)
Mobile Phase: B1: 0.1 % FA IN WATER A1: 0.1%FA IN ACN
Gradient: Time (min) /%A1: 0/2, 0.4/2, 2.8/95, 3.4/95, 3.41/2, 3.5/2
Column Flow Rate: 0.6 mL/min
Column Temperature: 60°C

<table>
<thead>
<tr>
<th>Peak</th>
<th>RT</th>
<th>Area</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.42</td>
<td>751.216</td>
<td>99.1%</td>
</tr>
<tr>
<td>2</td>
<td>0.46</td>
<td>6.429</td>
<td>0.849</td>
</tr>
</tbody>
</table>
GVR BIOSCIENCES PVT. LTD.
MEDICINAL CHEMISTRY LABORATORY - ANALYTICAL RESEARCH
LCMS REPORT

Vial position: B1-C-06
Date of Analysis: 6/29/2017 3:34:12 AM
Injection Vol: 0.300uL
Acq. Method: RND-FA-3.5mins
Instrument ID: ANL-MCL5-LCMS-001
Sample Name: GVR-VK-007-NF-112

RND-FA-3.5 MIN.M
Column: ACQUITY UPLC BEH C18 (50mmx2.1mm, 1.7um)
Mobile Phase: B: 0.1% FA IN WATER A: 0.1% FA IN ACN
Gradient: Time (min) /%A: 0/2, 0.4/2, 2.8/98, 3.4/98, 3.41/2, 3.5/2
Column Flow Rate: 0.6 ml/min
Column Temperature: 60°C

Graph with chromatogram and mass spectrum

Table:

<table>
<thead>
<tr>
<th>Peak</th>
<th>RT</th>
<th>Area</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.62</td>
<td>1.254</td>
<td>0.027</td>
</tr>
<tr>
<td>2</td>
<td>1.67</td>
<td>4502.580</td>
<td>90.076</td>
</tr>
<tr>
<td>3</td>
<td>1.74</td>
<td>97.094</td>
<td>1.897</td>
</tr>
</tbody>
</table>
Date of Analysis: 10/6/2017 7:25:59 PM
Injection Vol: 0.500µL
Vial position: P1-A-07
Sample Name: GVK-PHD-VK-61
Acq. Method: RND-FA-3.5mnms
Instrument ID: ANL-MOL5-LCMS-001
Column: ACQUITY UPLC BEH C18 (50mmx2.1mm, 1.7um)
Mobile Phase: B1: 0.1% FA IN WATER, B2: 0.1%FA IN ACN
Gradient: Time (min) /%A1: 0/2, 0.2/2, 2.3/98, 3.4/98, 3.41/2, 3.5/2
Column Flow Rate: 0.6 ml/min
Column Temperature: 50°C
*DAD1 A, Sig=215.4 Ref=off (2017/OCT/PRO51719/M4164.D - 2017/OCT/PRO/BLANK-06/02/2017.08.D)

<table>
<thead>
<tr>
<th>Pea</th>
<th>RT</th>
<th>Height</th>
<th>Area</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.45</td>
<td>348.158</td>
<td>538.268</td>
<td>98.754</td>
</tr>
<tr>
<td>2</td>
<td>1.55</td>
<td>4.770</td>
<td>6.753</td>
<td>1.246</td>
</tr>
</tbody>
</table>