Figures 1 to 5, which were published along with the printed version of the paper, are also being provided here for viewing in a larger size.

Figure 1 Ventrodorsal view of the pelvis of a 13-month-old male Labrador Retriever (juvenile pubic symphysiodesis group) showing method 1 for determination of the radiographic appearance of the obturator foramen. Line A was drawn along the greatest distance between the craniolateral aspect of the obturator foramen and its caudomedial part and line B was drawn perpendicular to line A at its midpoint.
Figure 2 Ventrodorsal view of the pelvis of a 13-month-old male Labrador Retriever (juvenile pubic symphysiodesis group) showing method 2 for determination of the the radiographic appearance of the obturator foramen. A dotted line was drawn between the ischial tuberosity and cranial pubic symphysis (alpha, α) and another dotted line was drawn from the craniolateral acetabular margin to the caudal pelvic symphysis (beta, β) on both sides. The major diameter of the obturator foramen (F), marked in black, started at the cranial aspect of beta and ended at its most caudal aspect. The diameter F was divided into four equal parts using three black lines (lines 1, 2, and 3) drawn parallel to alpha, from the medial to the lateral border of the obturator foramen.
Figure 3 Ventrodorsal view of the pelvis of a 13-month-old male Labrador Retriever (juvenile pubic symphysiodesis group) showing method 3 for determination of the radiographic appearance of the obturator foramen: Two lines were drawn tangentially to the proximal (gamma, γ) and distal (delta, δ) aspects of both obturator foramina. Then the distance N between these two lines on the pubic symphysis was measured. The distance N was divided into four equal parts using three black dashed lines (1, 2, 3) drawn parallel to gamma across the obturator foramen.
Figure 4 Ventrodorsal view of the pelvis of a 13-month-old male Labrador Retriever (juvenile pubic symphysiodesis group) showing the radiographic assessment of the pubic rami: A circle (A) was drawn in the thinnest part of each pubic ramus and a second circle (B), marked with dotted line, was drawn in the pubic symphysis including the cranial pubic tubercle proximally. Line T, a black dashed line, was divided in four equal parts using three solid black lines (1, 2, 3) drawn perpendicular to T.
Figure 5A) Ventrodorsal view of the pelvis of a 13-month-old male Labrador Retriever (juvenile pubic symphysiodesis group) showing the subjective criteria used for radiographic evaluation: 1 (visibility of the acetabular fossa), 2 (partial or complete closure of the cranial part of the pubic symphysis), 3 (irregular margin of the cranial pubic symphysis and/or increased radiodensity of the cranial pubic contour), 4 (shortening and broadening of the pubic ramus), and 5 (widening of the obturator foramen).
Figure 5B) Ventrodorsal view of the pelvis of a 13-month-old male Labrador Retriever (control group) showing: 1) acetabular fossa detectable in dogs with good hip conformation, 2) cranial pubic symphysis not fused, 3) normal cranial pubic contour and regular bone density, 4) thin pubic ramus, and 5) oval obturator foramen.