<table>
<thead>
<tr>
<th>First author (alphabetical order)</th>
<th>Study aims</th>
<th>Study design</th>
<th>Sampling, selection, recruitment, and consent</th>
<th>Data collection methods</th>
<th>Reliability and validity of data collection methods</th>
<th>Data analysis methods</th>
<th>Reliability and validity of data analysis methods</th>
<th>Study main outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ancker [42]</td>
<td>Explore the individuals tracking of their own health and medical data.</td>
<td>Qualitative exploratory method used to collect data about personal tracking.</td>
<td>Sampling source: patients with multiple chronic diseases, and health care providers. Selection: patients from Weill Cornell Medical College and the Institute for Family Health. Recruitment: via outpatient clinics in internal medicine and endocrinology and from the patient information library, using both promotional flyers and individual referrals from physicians and nurse practitioners. Consents: written and oral consent were obtained from participants.</td>
<td>Semi-structured interview study with 22 patients and 7 health care providers.</td>
<td>Reliability: semi-structured interviews were used to improve the reliability of the collected data. Validity: one researcher attended six 90-minute sessions of a diabetes education support group as a means of triangulating emerging themes.</td>
<td>The interviews were transcribed and themes inductively analysed.</td>
<td>Reliability: codebook was developed by two researchers, and was reviewed by at least two team members, independently. They then met to reach consensus on it to ensure reliability. Validity: researchers used member-checking method to improve internal validity.</td>
<td>Found that (1) tracking such data feels like work for many patients, (2) personal medical data for individuals with chronic conditions are not simply objective facts, but instead provoke strong positive and negative emotions, value judgments, and diverse interpretations, (3) patients track for different purposes, ranging from sense-making to self-management to reporting to the doctor, and (4) patients often notice that physicians trust technology measured data such as lab reports over patients' self-tracked data.</td>
</tr>
<tr>
<td>Choe [53]</td>
<td>Examine what insights people gain from their personal data, and how they use visualisations to communicate their insights.</td>
<td>Qualitative research was conducted by collecting data from video-recordings posted on Quantifies-self Meetup site.</td>
<td>Sampling source: members of Quantified Self Meetup group. Selection: video-recordings posted voluntarily by the members. Recruitment: NA. Consents: NA</td>
<td>30 video-recordings of QuantifiedSelf Meetup talks.</td>
<td>Reliability: systematic capturing of the demographic data and information related to key aspects in the study. Validity: setting criteria of inclusion.</td>
<td>The video-recordings were transcribed, and themes inductively analysed.</td>
<td>Reliability: two researchers coded data independently. They then met to resolve any disagreements or modify the initial coding scheme. Validity: the content were analysed repeatedly until data saturation was reached.</td>
<td>Found that there are eight insight types (detail, self-reflection, trend, comparison, correlation, data summary, distribution, and outlier).</td>
</tr>
<tr>
<td>Dontje [47]</td>
<td>Determine the inter-device reliability of activity trackers in measuring steps.</td>
<td>Idiographic study conducted by using Fitbit Ultra activity tracker.</td>
<td>Sampling source: the researcher is the subject of study. Selection: NA Recruitment: NA Consents: NA</td>
<td>The researcher collected data about himself routinely for a period of 8 days, by using ten Fitbit Ultra devices.</td>
<td>Reliability: consistent log of steps taken was carried out. Validity: one person collected data through the use of multiple tools to ensure the consistency of collecting data method.</td>
<td>Quantitative statistical analysis was conducted to analyse the collected data.</td>
<td>Reliability: statistical analysis was performed by a statistical program. Validity: evaluation of agreement of producing similar numbers by one device was based on comparing measures generated from this device with other 9 devices.</td>
<td>Found that individuals can reliably compare their daily physical activity scores with peers.</td>
</tr>
</tbody>
</table>
Ivanov [57]

Study aim: Examine the sharing of health-tracking records (HTR) by patients with others (e.g., spouse/partner, relatives, doctors, etc.).

Methodology: Exploratory study was conducted by interviewing people over telephone, including landline and cellphone.

Sampling source: 3014 adults living in the United States.
Selection: stratified sampling used to recruit participants who have access to either a landline or a cellphone; telephone numbers were drawn with equal probabilities.
Recruitment: made as many as 7 attempts to contact every sampled telephone number.
Consents not stated.

Results: Structured interviews with 761 adults who met the inclusion criteria (i.e., had shared their HTR either online or offline, and kept track of their own health related indicators).
Reliability: data were systematically collected via interviews.
Validity: the sample size was big enough for data analysis, and setting criteria of inclusion increased the validity of data collection.
Quantitative analysis to investigate the influence of motivation, health severity, age, and perceived health status factors on sharing of HTR with others.
Reliability: use of statistical software for data analysis.
Validity: multinomial logistic regression was conducted to find significant results.

Liang [56]

Study aim: Explore preventive health care at the individual level based on self-quantification.

Methodology: Case study.

Sampling source: one healthy adult.
Selection: a 25-year-old healthy Asian female with no medical history of any significant sickness or chronic diseases.
Recruitment: not stated.
Consents not stated.

Results: The subject designed and conducted a self health care project for tracking sleep quality for 20 days.
Reliability: a diary was used to collect data where the subject kept logging all the potential affecting factors on a daily basis. All data were stored in an Excel file.
Validity: valid metrics (e.g., Wake-Up Freshness WUF and Subjective Sleep Efficiency SSE) were used to collect data about sleep quality, and a literature review was performed to define the potential affecting factors.
Quantitative analysis of the correlation between each potential affecting factor and the metrics was conducted.
Reliability: a reliable statistical method, the Pearson correlation coefficient, was used to analyse data.
Validity: the result of the quantitative analysis that was used to find the significant factors was clearly reported in two tables.

Oh [46]

Study aim: Explore user experience (UX) issues related to quantified self tools, and categorise tracking tools.

Methodology: Qualitative research was conducted by collecting data from tools reviews posted on Quantifies Self website.

Sampling source: members of Quantified Self Meetup group.
Selection: tools’ reviews posted by users on the Quantified Self website.
Recruitment: NA
Consents: NA

Results: 209 reviews from the Quantified Self website were collected.
Reliability: systematic capturing of the demographic data and information related to key aspects of the study.
Validity: setting criteria of inclusion.
An inductive content analysis was conducted to generate themes.
Reliability: use of Affinity method to systematically analyse the postings.
Validity: the extraction of themes was performed iteratively.

Papi [45]

Study aim: Identify perspective of patients with osteoarthritis (OA), in particular design requirements and mode of use, on wearable technology to support rehabilitation.

Methodology: Qualitative study using a focus group approach.

Sampling source: patients with osteoarthritis.
Selection: participants were sampled based on being diagnosed with OA through clinical assessment or imaging undergoing rehabilitation, and having a good understanding of written and spoken English.
Recruitment: patients were recruited from the Imperial

Results: 21 patients with OA took part in one of four focus groups.
Reliability: a semi structured topic guide was used to collect data.
Validity: setting criteria of inclusion increased the validity of data collection.
Each focus group was audio-recorded and transcribed verbatim to allow subsequent analysis.
Reliability: a thematic analysis was conducted on each focus group by using Framework Methodology.
Validity: the extraction of themes was conducted iteratively, until data saturation was

Results: Found that the main determinants of user acceptance of a wearable technology were appearance and comfort during use.
Punnoose [54] Examining TicTrac and HealthVault tools’ performance in terms of usability and visualisation in integrating biometric data from self-quantification.

Idiographic study was conducted by using four tools to collect data (LARK sleep monitoring system; Fitbit Atria; Polar wristband; iHealth Blood Pressure), and two tools to integrate data (TicTrac and HealthVault).

Sampling source: the researcher was the subject of study.
Selection: NA
Consent: NA

The researcher collected and integrated biometric data about himself routinely for a period of four weeks, four using SQ tools.

Reliability: consistent log of health indicators like sleep, blood pressure, etc., and of measures and time taken to collect and integrate data
Validity: one person collected data through the use of multiple tools to ensure the consistency of collecting data method.

Data analysis was done by thematically reviewing the content of the log, and by inspecting the resulting visual artefacts that were created using each integrating tool.

Reliability: analysis of integration tools performance was done by using models like cognitive efficiency model of graphical design, and usability models.

Identiﬁed that TicTrac performed better than HealthVault in both evaluations.

Shih [49] Explore how personal preferences and other individual characteristics affect use and adoption of wearable activity trackers.

User trial.

Sampling source: undergraduate students.
Selection: undergraduate students who were at a large American university; ranging in age from 20 to 24 years old; and interested in trying Fitbit for tracking self.
Recruitment: the authors advertised the study in the university to recruit the participants.
Consents not stated.

A six-week user trial was conducted with 18 males and 8 females. Each participant received Fitbit Force and Fitbit Ultra.

Reliability: a pre-survey and post-survey that included 7-point Likert scale questions and open questions was used to collect data.
Validity: setting criteria of inclusion increase the validity of data collection.

Quantitative and qualitative analysis was conducted to analyse the collected data.

Reliability: a reliable statistical method, the k-mean, was used to analyse numerical data. Also, thematic coding was used to analyse responses to the open questions.

Validity: in the quantitative analysis, significant results were reported. In the qualitative one, results were coded iteratively by two researchers.

Identified a list of challenges that have impact on the use and adoption of wearable activity trackers such as issues with physical design and aesthetics.

Choe [43] Investigate how users used self-tracking technologies and built workarounds to overcome barriers.

Qualitative research was conducted by collecting data from video-recordings posted on Quantifies Self Meetup site.

Sampling source: members of Quantified Self Meetup groups.
Selection: video-recordings posted by members.
Recruitment: NA
Consents: NA

52 video-recordings of Quantified Self Meetup talks.

Reliability: systematic capturing of the demographic data and information related to key aspects in the study.
Validity: setting criteria of inclusion.

The video-recordings were transcribed, and themes inductively analysed.

Reliability: use of Affinity method to systematically analyse the video transcript.
Validity: the extraction of themes was performed iteratively.

Found that key barriers of self-tracking were tracking too many things, which led to ‘tracking fatigue’; not tracking context, which led to not gaining insights; and insufficient scientiﬁc rigor.
Kim [41]
Investigate user experiences of using self-tracker tools for activity, sleep, and diet.

Sampling source: female university students who have no chronic diseases. Selection: snowball sampling was used to recruit students. Recruitment: the authors approached and verbally recruited the participants. Consents: sought from participants during the orientation session.

Three months study of actual Fitbit utilisation with 44 female college students; and a follow-up in-depth interview with 18 students.

Reliability: systematic extraction of constructs from the experimental data was performed. Validity: the extraction of constructs was conducted iteratively, until data saturation was reached.

The interviews were transcribed and thematically analysed.

Reliability: data were analysed by using multiple tools such as System Usability Questionnaire, and Intrinsic Motivation Inventory (IMI). Validity: quantitative analysis used to test the significance of the extracted themes.

Developed and verified the Health Information Technology Acceptance Model II (HITAM-II) that consists of 5 factors: information technology factors, personal factors, social factors, attitude, behavioural intention, and behaviour.

Kim [48]
Verify the health information technology acceptance model (HITAM) in the context of the health consumers’ attitude, behavioural intention, and behaviour regarding utilising self-trackers.

Sampling source: female university students who have no chronic diseases. Selection: snowball sampling was used to recruit participants. Recruitment: the authors approached and verbally recruited the participants. Consents: sought from participants during the orientation session.

44 female college students were asked to register and create an account on the product website and to wear Fitbit for 90 days to track sleep, diet, and activity.

Reliability: systematic collection of data was conducted. Validity: triangulated qualitative methods (e.g., interviews, questionnaires, etc.) were used to collect data and improve the validity of the study.

Statistical analysis of constructs and related variables was conducted.

Reliability: descriptive statistics of the variable scores, and the reliability coefficients of the constructs were reported. Validity: the validity of the extracted constructs was assessed using statistical analysis, and only statistically significant variables were only included in the HITAM model.

Verified 5 factors in the HITAM model: information technology factors, personal factors, social factors, attitude, behavioural intention, and behaviour.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Study Title</th>
<th>Participants</th>
<th>Methodology</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lee [10]</td>
<td>Identify the variety of self-quantifiers, the reported motivations driving individuals to self-quantify, and the data analysis activities.</td>
<td>Qualitative research was conducted by collecting data from video-recordings posted on Quantified Self Meetup site.</td>
<td>Sampling source: members of Quantified Self Meetup groups. Selection: video-recordings posted voluntarily by self-quantifiers. Recruitment: NA Consents NA</td>
<td>12 video-recordings of Quantified Self Meetup talks. Reliability: systematic capturing of the demographic data and information related to key aspects in the study. Validity: limitations and biases associated with the use of these videos as source of data were reported. The video-recordings were transcribed, and themes analysed. Reliability: thick description of the coding process. Validity: the video transcripts were coded iteratively. Provided insights about motivations for pursuing self-quantification, and about enabling conditions that could build on initial motivation and support the presenter's ability to pursue self-quantification and analyses of self-quantification data.</td>
</tr>
<tr>
<td>Packer [36]</td>
<td>Investigate users' perceptions of problems with using tracking tools and interpreting data.</td>
<td>Cross-sectional survey collecting qualitative data about self-tracking.</td>
<td>Sampling source: not stated. Selection: not stated. Recruitment: not stated. Consents: not stated.</td>
<td>Survey study with 22 participants. Reliability: the use of structured survey may increase the collected data reliability. Validity: An interface was designed to test and validate the findings of the survey. Not stated. Reliability: not stated. Validity: not stated. Found that users desired the ability to annotate, retroactively repair, and compare their data; thus, developed an interface based on these findings.</td>
</tr>
<tr>
<td>Pickard [52]</td>
<td>Investigate consumer attitudes toward sharing health information, particularly for research purposes.</td>
<td>Crowdsourced health study cohort.</td>
<td>Sampling source: members of Genomera and Traitwise. Selection: participants enrolled voluntarily into the study. Recruitment: via Genomera. Consents: sought from participants via online form.</td>
<td>Survey study consisted of 27 questions and was performed via Genomera from July 30, 2012 to April 30, 2013, with 128 participants. Reliability: the use of structured survey could increase the collected data reliability. Validity: the study has re-opened on Genomera to collect further information to validate the results. Descriptive and correlation analysis were conducted. Reliability: not stated. Validity: cohort-based correlations were not possible due to limitation in the sample size. Found a strong willingness to share personal health information. Suggested a framework to increase health information sharing, which describes four elements: trust, motivation, community, and informed consent.</td>
</tr>
<tr>
<td>Rooksby [35]</td>
<td>Investigate approaches to personal tracking associated with health and wellbeing.</td>
<td>Qualitative exploratory method used to collect data about personal tracking.</td>
<td>Sampling source: local subjects (Scotland city). Selection: people that used, had used, or would like to borrow and use a pedometer or activity tracker were eligible to participate. Recruitment: via posters advertising the study in coffee shops, a bookshop, and a university building in a city in Scotland. Consent: not stated.</td>
<td>Interview study with 22 activity tracker users, and a follow-up contact with 22. Email and video conferencing were used to contact participants. Reliability: the use of unstructured interviews may reduce the collected data reliability. Validity: mixed qualitative methods used to validate the results. The interviews were transcribed and thematically analysed. Reliability: Not stated. Validity: data analysis was grounded in the views of interviewees. Suggested five styles of personal tracking: directive tracking, documentary tracking, diagnostic tracking, collecting rewards, and fetishised tracking.</td>
</tr>
<tr>
<td>Authors</td>
<td>Investigate how members of the QuantifiedSelf Meetup Group overcome data integration barriers.</td>
<td>Qualitative research was conducted by collecting data from presentations posted on Quantifies-self Meetup site.</td>
<td>Sampling source: members of Quantified Self Meetup group. Selection: video recordings posted on QuantifiedSelf Meetup site. Recruitment: NA Consents: NA</td>
<td>51 videos of QuantifiedSelf presentations.</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Whooley [55]</td>
<td>De Maeyer [40]</td>
<td></td>
<td>Sampling source: users of Body Media system who tracked physical activity, food and sleep. Selection: people who are not early adopters of self-monitoring devices were selected to participate in the study. Recruitment: via contacts of one of the authors. Consent: not stated.</td>
<td>Field study with10 participants wearing Body Media arm bands and using the Body Media Activity manager to monitor their progress and goals for two periods (fall and spring) of two months.</td>
</tr>
<tr>
<td>Fiore-Silfvast [28]</td>
<td>Examine gaps between discourses on data, practices with and around data, and contexts in which data exist, in order to define the nature of data in health self-tracking.</td>
<td>Exploratory method used to collect data about health monitoring.</td>
<td>Sampling source: various stakeholders associated with the use of technology in health and wellness. Selection: formal healthcare institutions and informal consumer health communities were selected. Recruitment: via Medicare project in Washington State, meetups groups like Quantified Self, and conferences such as Health 2.0, TedMed, and Medicine X. Consent: not stated.</td>
<td>43 clinicians, technology designers, and users were interviewed.</td>
</tr>
<tr>
<td>Gimppe [39]</td>
<td>Investigate underlying motivations of self-triggered health monitoring.</td>
<td>Exploratory method used to collect data about health monitoring.</td>
<td>Sampling source: members of Quantified Self Berlin Meetup. Selection: people who track themselves were eligible to participate. Recruitment: respondents were recruited offline and online via multiple channels: in-person Meetups related to self-tracking, Meetup.com online groups related to self-tracking, Facebook groups related to self-tracking</td>
<td>150 self-trackers took part in one of six face-to-face group interviews conducted at a Meetup of the Quantified Self Berlin Meetup Group in September 2012.</td>
</tr>
<tr>
<td>Author</td>
<td>Method</td>
<td>Sampling Source</td>
<td>Selection</td>
<td>Recruitment</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>-----------------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Guo [50]</td>
<td>Provide criteria to evaluate self-tracking devices available in the market, for researchers considering incorporating such tools into their research.</td>
<td>Field study was designed to evaluate tools' ability to measure number of steps and distance travelled by users.</td>
<td>Sampling source: participants who used one or more of these tools (i.e., Fitbit, Nike+ fuelband, Nike+ sportsband, Moves app, Omron steps pedometer, and SM-2000 pedometer). Selection: participants were selected by the researcher. Recruitment: via researcher's contacts. Consent: not stated.</td>
<td>15 participants wore one or more of the selected set of devices. Some wore the tools for several weeks. Reliability: systematic data collection was conducted. Validity: objective data that were collected by SQ tools were used in the study.</td>
</tr>
<tr>
<td>Lee [37]</td>
<td>Investigate experiences of athletes already using physical activity tracking technologies.</td>
<td>Qualitative exploratory method used to collect data about personal tracking.</td>
<td>Sampling source: athletes. Selection: participants who resided in and participated in athletic activities in Utah State were invited to participate. Recruitment: via advertising on local sports equipment stores, running and cycling clubs, and word of mouth. Consent: not stated.</td>
<td>Interview study with 20 athletes who participated in distance cycling or endurance running. Reliability: structured interviews were conducted. Validity: the sample size was big enough for data analysis, and setting criteria of inclusion increased the validity of data collection.</td>
</tr>
<tr>
<td>Lee [38]</td>
<td>Investigate the use of physical activity tools to undertake data analysis activities.</td>
<td>Field study collecting data from fifth-grade students during recess time.</td>
<td>Sampling source: fifth-grade students. Selection: 12 fifth-grade students from the same class were selected. Recruitment: not stated. Consent: not stated.</td>
<td>Two weeks field study was conducted to observe students' behaviour by using the computer's internal webcam and microphone. Validity: the observations from the first week's group informed and influenced the second week's implementation. Reliability: participants' activities were recorded by using the computer's internal webcam and microphone.</td>
</tr>
<tr>
<td>2012</td>
<td>Chang [44]</td>
<td>Provide a method for evidence-based practice through using self-tracking tools.</td>
<td>Case study.</td>
<td>Sampling source: one athlete. Selection: a 13-year-old female who was an athlete of national level calibre and a patient with chronic illness (hypothyroidism). Recruitment: the subject was chosen and contacted by the researcher. Consent: not stated.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2012</td>
<td>Li [23]</td>
<td>Investigate users experiences with collecting and reflecting on information obtained from personal informatics systems in order to provide guidance for making these systems more effective.</td>
<td>Exploratory qualitative research.</td>
<td>Sampling source: users of personal informatics systems. Selection: users who were more likely to have used one or more personal informatics systems. Recruitment: via blog dedicated to personal informatics (http://quantifiedself.com), a blog about general information visualisation (http://flowingdata.com), and forums at two personal informatics web sites (http://slifelabs.com and http://moodjam.org). Consent: not stated.</td>
</tr>
</tbody>
</table>