Literatur zu

Point-of-Care-Testing
Point-of-Care-Testing und Hämotherapiealgorithmen
Thorsten Brenner • Stefan Hofer


3 Jacobs MR, Palavecino E, Yomtovian R. Don't bug me: the problem of bacterial contamination of blood components – challenges and solutions. Transfusion 2001; 41: 1331–1334


7 Sarani B, Dunkman WJ, Dean L et al. Transfusion of fresh frozen plasma in critically ill surgical patients is associated with an increased risk of infection. Crit Care Med 2008; 36: 1114–1118


16 Chee YL, Greaves M. Role of coagulation testing in predicting bleeding risk. Hematol J 2003; 4: 373–378


26 Anderson L. Comments on head to head TEG vs ROTEM. Anaesthesia 2009; 64: 1264–1265; author reply 1265–1266


64 Gonzalez EA, Moore FA, Holcomb JB et al. Fresh frozen plasma should be given earlier to patients requiring massive transfusion. J Trauma 2007; 62: 112–119


73 Doran CM, Woolley T, Midwinter MJ. Feasibility of using rotational thromboelastometry to assess coagulation status of combat casualties in a deployed setting. J Trauma 2010; 69 (Suppl. 1): S40–48

74 Kitchens CS. To bleed or not to bleed? Is that the question for the PTT? J Thromb Haemost 2005; 3: 2607–2611

75 Martini WZ, Cortez DS, Dubick MA et al. Thrombelastography is better than PT, aPTT, and activated clotting time in detecting clinically relevant clotting abnormalities after hypothermia, hemorrhagic shock and resuscitation in pigs. J Trauma 2008; 65: 535–543

76 Park MS, Martini WZ, Dubick MA et al. Thromboelastography as a better indicator of hypercoagulable state after injury than prothrombin time or activated partial thromboplastin time. J Trauma 2009; 67: 266–275; discussion 275–266


79 Gorlinger K. Coagulation management during liver transplantation. Hamostaseologie 2006; 26 (Suppl. 1): S64–76
80 Bolliger D, Gorlinger K, Tanaka KA. Pathophysiology and treatment of coagulopathy in massive hemorrhage and hemodilution. Anesthesiology 2010; 113: 1205–1219


93 Harrison TK, Manser T, Howard SK, Gaba DM. Use of cognitive aids in a simulated anesthetic crisis. Anesth Analg 2006; 103: 551–556


112 Lang T, von Depka M. Possibilities and limitations of thrombelastometry/-graphy. Hamostaseologie 2006; 26 (Suppl. 1): S20–29


137 Theusinger OM, Wanner GA, Emmert MY et al. Hyperfibrinolysis diagnosed by rotational thromboelastometry (ROTEM) is associated with higher mortality in patients with severe trauma. Anesth Analg 2011; 113: 1003–1012


141 Dunbar NM, Chandler WL. Thrombin generation in trauma patients. Transfusion 2009; 49: 2652–2660


144 Schochl H, Cotton B, Inaba K et al. FIBTEM provides early prediction of massive transfusion in trauma. Crit Care 2010; 15: R265


146 Stinger HK, Spinella PC, Perkins JG et al. The ratio of fibrinogen to red cells transfused affects survival in casualties receiving massive transfusions at an army combat support hospital. J Trauma 2008; 64 (Suppl. 2): S79–85; discussion S85


151 Casati V, Guzzon D, Oppizzi M et al. Tranexamic acid compared with high-dose aprotinin in primary elective heart operations: effects on perioperative bleeding and allogeneic transfusions. J Thorac Cardiovasc Surg 2000; 120: 520–527


176 Xia VW, Steadman RH. Antifibrinolytics in orthotopic liver transplantation: current status and controversies. Liver Transpl 2005; 11: 10–18


