Literatur zu

Sepsis und Multiorganversagen
Pathophysiologie der Sepsis
Florian Uhle • Christoph Lichtenstern • Thorsten Brenner • Markus A. Weigand

3 Czura CJ. Merinoff symposium 2010: sepsis-speaking with one voice. Molecular medicine (Cambridge, Mass) 2011; 17: 2–3

5 Takeuchi O, Akira S. Pattern Recognition Receptors and Inflammation. Cell 2010; 140: 805–820

6 Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. Journal of Leukocyte Biology 2006; 81: 1–5

8 Janko C, Janko C, Filipović M et al. Redox Modulation of HMGB1-Related Signaling. Antioxidants & Redox Signaling 2013, DOI: 10.1089/ars.2013.5179: 130319100953002

15 Oberholzer A, Steckholzer U, Kurimoto M et al. Interleukin-18 plasma levels are increased in patients with sepsis compared to severely injured patients. Shock (Augusta, Ga) 2001; 16: 411–414

19 Klöckner U, Rueckschloss U, Grossmann C et al. Inhibition of cardiac pacemaker channel hHCN2 depends on intercalation of lipopolysaccharide into channel-containing membrane microdomains. The Journal of physiology 2014; 592: 1199–1211

20 Müller-Werdan U. Tumor Necrosis Factorα (TNFα) is Cardiodepressant in Pathophysiologically Relevant Concentrations Without Inducing Inducible Nitric Oxide-(NO)-Synthase (iNOS) or Triggering Serious Cytotoxicity. Journal of molecular and cellular cardiology 1997; 29: 2915–2923

25 Steppan J, Hofer S, Funke B et al. Sepsis and major abdominal surgery lead to flaking of the endothelial glycocalix. The Journal of surgical research 2011; 165: 136–141

37 Bopp C, Sprick MR, Hofer S et al. Soluble TREM-1 is not suitable for distinguishing between systemic inflammatory response syndrome and sepsis survivors and
nonsurvivors in the early stage of acute inflammation. European journal of anaesthesiology 2009; 26: 504-507

45 Boomer JS, Boomer JS, Shuherk-Shaffer J et al. A prospective analysis of lymphocyte phenotype and function over the course of acute sepsis. Critical Care 2012; 16: R112
