Supporting Information

The Role of Non-Placental Signals in the Adaptation of Islets to Pregnancy

Authors

R. Drynda¹, C. J. Peters², P. M. Jones¹, J. E. Bowe¹

Affiliations

¹Diabetes Research Group, Division of Diabetes and Nutritional Sciences, King’s College, London, UK

²Department of Endocrinology, Great Ormond Street Hospital, London, UK

Correspondence

Dr. J. E. Bowe
Hodgkin Building
King’s College London
Guy’s campus
London SE1 1UL
Tel.: +44/20/7848 6279
Fax: +44/20/7848 6280
james.bowe@kcl.ac.uk
Fig. 1S A Daily vaginal smears were taken from non-pregnant mice and stained using haemotoxylin and eosin. Over a cycle of 4–5 days the cell types visible in smears changed depending on the stage of the oestrous cycle. At proestrus nucleated epithelial cells are visible, followed by predominantly cornified epithelial cells at estrus. Metestrus is characterised by a combination of cornified epithelial cells and leukocytes. Diestrus smears contain leukocytes and nucleated epithelial cells. B In pregnant mice very few cells of any kind are visible in vaginal smears and there is no change in the appearance of smears across 4–5 days. C Vaginal smears from pseudopregnant mice are identical to those of pregnant mice for the duration of pseudopregnancy, with very few cells visible and no change from day to day. The end of pseudopregnancy is marked by large quantities of nucleated epithelial cells and leukocytes. Thus pseudopregnancy can be monitored from day to day, ensuring it is maintained in each mouse.