Literatur

41. van der Heijden M, Pickkers P, van Nieuw Amerongen GP et al. Circulating angiopoietin-2 levels in the course of septic shock:
42 Kumpers P, Lukas A, David S et al. Excess circulating angio-
poietin-2 is a strong predictor of mortality in critically ill medical patients. Crit Care 2008; 12: R147
43 Dejana E, Orsenigo F, Lampugnani MG. The role of adherens
junctions and VE-cadherin in the control of vascular permea-
45 Zarbock A, Ley K. Mechanisms and consequences of neutro-
phil interaction with the endothelium. Am J Pathol 2008; 172: 1–7
46 Marechal X, Favory R, Joulin O et al. Endothelial glyocalyx
damage during endotoxemia coincides with microcirculatory dysfunction and vascular oxidative stress. Shock 2008; 29: 572–576
50 Ellis CG, Bateman RM, Sharpe MD et al. Effect of a maldistri-
bution of microvascular blood flow on capillary O(2) extracti-
51 De Backer D, Creteur J, Dubois MJ et al. The effects of dobuta-
mine on microcirculatory alterations in patients with septic shock are independent of its systemic effects. Crit Care Med 2006; 34: 403–408
52 Pottecher J, Deruddre S, Teboul JL et al. Both passive leg rais-
ing and intravascular volume expansion improve sublingual microcirculatory perfusion in severe sepsis and septic shock patients. Intensive Care Med 2010; 36: 1867–1874
53 Pope JV, Jones AE, Gaieski DF et al. Multicenter study of cen-
56 Sharshar T, Blanchard A, Paillard M et al. Circulating vaso-
pressin levels in septic shock. Crit Care Med 2003; 31: 1752–1758
57 Mackenzie IM. The haemodynamics of human septic shock. Anesthesia 2001; 56: 130–144
58 Weng L, Liu YT, Du B et al. The prognostic value of left ven-
tricular systolic function measured by tissue Doppler imag-
ing in septic shock. Crit Care 2012; 16: R71
59 Muller-Werdan U, Buerke M, Ebel H et al. Septic cardiomyo-
60 Morelli A, Ertmer C, Westphal M et al. Effect of heart rate con-
control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial. JAMA 2013; 310: 1683–1691
61 Dunser MW, Takala J, Brunauer A et al. Re-thinking resuscita-
tion: leaving blood pressure cosmetics behind and moving forward to permissive hypotension and a tissue perfusion-based approach. Crit Care 2013; 17: 326
63 Hotchkiss RS, Swanson PE, Freeman BD et al. Apoptotic cell death in patients with sepsis, shock, and multiple organ dys-
65 VanderMeer TJ, Wang H, Fink MP. Endotoxemia causes ileal mucosal acidosis in the absence of mucosal hypoxia in a nor-
67 Levy B, Desebbe O, Montemont C et al. Increased aerobic gly-
colysis through beta2 stimulation is a common mechanism involved in lactate formation during shock states. Shock 2008; 30: 417–421
70 Singer M. Cellular dysfunction in sepsis. Clinics in chest medi-
cine 2008; 29: 655–660, viii-ix
73 Mullens W, Abrahams Z, Francis GS et al. Importance of venous congestion for worsening of renal function in ad-
74 Hertrier T, Tischer A, Meyer A et al. The intrinsic renal com-
partment syndrome: new perspectives in kidney transplantation. Transplantation 2010; 89: 40–46