Supporting Information to:

Curcumin Up-Regulates LDL Receptor Expression via the Sterol Regulatory Element Pathway in HepG2 Cells

Xiaobing Dou¹, Chunlei Fan¹, Like Wo³, Jin Yan², Ying Qian¹, Xingde Wo¹

Affiliation

¹ Life Science College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, P. R. China

² Department of Medical Science, Qianjiang College, Hangzhou Normal University, Hangzhou, Zhejiang Province, P. R. China

³ Laboratory & Research Center, Traditional Chinese Medicine Hospital of Zhejiang, Hangzhou, Zhejiang Province, P. R. China

Correspondence

Prof. Chunlei Fan

Life Science College of Zhejiang Chinese Medical University

Binwen Road 548#

Hangzhou 310053

Zhejiang Province

People’s Republic of China

Tel.: +86-0571-8661-3625

Fax: +86-0571-8661-3598

snow@zjtcm.net
Fig. 1S Dose-dependent induction of LDL-R protein expression examined by IFA using flow cytometry (a) and fluorescence microscopy (b). Cells were treated with 10% LPDS (positive control), 10 mg/L 25-HC (negative control) or 0, 5, 15 or 25 µmol/L curcumin for 24 h. \(\bar{x} \pm s, n = 3. * P < 0.05 \) vs. blank control (without curcumin treatment).
Fig. 2S The uptake of DiI-LDL measured by fluorescence microscopy (×400) and flow cytometry. ($\bar{x} \pm s$, n = 3; * P < 0.05 and ** P < 0.001 vs. blank control).
Fig. 3S Curcumin increased LDL-R expression by activating SRE-1 in HepG2/SRE-GFP cells. (a) GFP expression in HepG2/GFP or HepG2/SRE-GFP cells treated with curcumin (0, 5, 10, 20 µmol/L) was detected by flow cytometry (* $P < 0.05$ and ** $P < 0.01$ vs. blank control. $\bar{x} \pm s$, n = 3). (b) Up-regulation of GFP expression in HepG2/SRE-GFP cells treated with curcumin (0, 5, 10, 20 µmol/L) was detected by fluorescence microscopy (×400).