Supporting Information to:

New Furanoditerpenoids from *Croton jatrophoides*

Zakaria H. Mbwambo¹, Kenne Foubert², Musa Chacha¹, Modest C. Kapingu¹, Joseph J. Magadula¹, Mainen M. Moshi¹, Filip Lemière³, Kees Goubitz⁴, Jan Fraanje⁴, René Peschar⁴, Arnold Vlietinck², Sandra Apers², Luc Pieters²

Affiliation

¹ Institute of Traditional Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
² Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
³ Department of Chemistry, Faculty of Sciences, University of Antwerp, Antwerp, Belgium
⁴ Laboratory for Crystallography, Van’t Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands

Correspondence

Luc Pieters

Department of Pharmaceutical Sciences
Faculty of Pharmaceutical, Biomedical and Veterinary Sciences
University of Antwerp
Universiteitsplein 1
2610 Antwerp
Belgium
Tel.: +32-3-820-2715
Fax: +32-3-820-2709
luc.pieters@ua.ac.be
Crystal Structure Determination of Isoteucvin (2)

A crystal with dimensions ca. 0.15 × 0.40 × 0.40 mm was used for data collection. A total of 1713 unique reflections were measured within the range 0 ≤ h ≤ 10, 0 ≤ k ≤ 14, 0 ≤ l ≤ 21. Of these, 1433 were above the significance level of 2.5 σ(Iobs) and were treated as observed. The range of (sin θ) / λ was 0.053–0.626 Å⁻¹ (4.7 ≤ θ ≤ 74.8°). Two reference reflections [(2 0 0), (1 2 2)] were measured hourly and showed no decrease during the 25-h collecting time. In addition, around 500 “Friedel” reflections were measured, which were used to determine the absolute configuration. Unit-cell parameters were refined by a least-squares fitting procedure using 23 reflections with 40.33 ≤ θ ≤ 43.92°. Corrections for Lorentz and polarization effects were applied. The structure was solved by the program package CRUNCH [1] and refined with XTAL [2] using scattering factors taken from Cromer and Mann and the International Tables for X-ray Crystallography [3], [4]. Structure validation, including the making of figures and tables, was carried out with PLATON [5]. The hydrogens were kept fixed at calculated positions, each with an isotropic atomic displacement parameter (U = 0.10 Å²). Anisotropic full-matrix least-squares refinement on F converged to R_f = 0.078, R_wF = 0.089, (Δσ)max = 0.01, S = 1.04. A weighting scheme w = [3. + 0.01*(σ(Fobs))² + 0.001/(σ(Fobs))]⁻¹ was used. The secondary isotropic extinction coefficient refined to g = 2291(291) [6], [7]. The absolute-structure Flack parameter refined to Xabs = 0.2, indicating that the correct enantiomer had been refined [8]. However, the large s.u. (= 12) of Xabs implies that the absolute structure is not established unambiguously. A final difference Fourier map revealed a residual electron density between −0.34 and 0.37 eÅ⁻³. The atom numbering of the refined crystal structure model is shown in Fig. 1S. The bond lengths and bond angles are close to values reported in the Cambridge Structural Database [9] for similar types of compounds.

Crystal Structure Determination of Jatrophoidin (3)

A crystal with dimensions ca. 0.20 × 0.30 × 0.75 mm was used for data collection. A total of 2022 unique reflections were measured within the range 0 ≤ h ≤ 8, 0 ≤ k ≤ 19, −10 ≤ l ≤ 10. Of these, 1884 were above the significance level of 2.5 σ(Iobs) and were treated as observed. The range of (sin θ) / λ was 0.058–0.626 Å⁻¹ (5.1 ≤ θ ≤ 74.8°). Two reference reflections [(2 0 2), (1 1 2)] were measured hourly and showed no decrease during the 70-h collecting time.
In addition, around 1500 “Friedel” reflections were measured, which were used to determine the absolute configuration. Unit-cell parameters were refined by a least-squares fitting procedure using 23 reflections with $40.00 \leq 0 \leq 50.61^\circ$. Corrections for Lorentz and polarization effects were applied. The structure was solved by the program package CRUNCH [1] and refined with XTAL [2] using scattering factors taken from Cromer and Mann and the International Tables for X-ray Crystallography [3], [4]. Structure validation, including the making of figures and tables, was carried out with PLATON [5]. The hydrogens were kept fixed at calculated positions, each with an isotropic atomic displacement parameter ($U = 0.10 \AA^2$). Anisotropic full-matrix least-squares refinement on F converged to $R = 0.075$, $R_w = 0.070$, $(\Delta^f \sigma)_{\text{max}} = 0.10$, $S = 1.05$. A weighting scheme $w = [0.9 + 0.01*(\sigma(F_{\text{obs}}))^2 + 0.001/(\sigma(F_{\text{obs}}))^{-1}$ was used. The secondary isotropic extinction coefficient refined to $g = 1236(92)$ [6], [7]. The absolute structure Flack parameter refined to $X_{\text{abs}} = -0.2(6)$, indicating that the correct enantiomer was refined [8]. A final difference Fourier map revealed a residual electron density between -0.23 and 0.28 eÅ$^{-3}$. The atom numbering of the refined crystal structure model is shown in Fig. 2S. The bond lengths and bond angles are close to values reported in the Cambridge Structural Database [9] for similar types of compounds.

References

2 Hall SR, Du Boulay DJ, Olthof-Hazekamp R. XTAL3.7 System. Lamb, Perth: University of Western Australia; 2000
3 Cromer DT, Mann JB. X-ray scattering factors computed from numerical Hartree-Fock wave functions. Acta Crystallogr 1968; A24: 321-4
5 Spek AL. Single-crystal structure validation with the program PLATON. J Appl Crystallogr 2003; 36: 7-13

Fig. 1S Isoteucvin (2).
Fig. 2S Jatrophoidin (3).