Supporting Information to

Investigation of Two Flacourtiaceae Plants: *Bennettiodendron leprosipes* and *Flacourtia ramontchii*

Xing-Yun Chai¹, Hong-Yan Ren¹, Zheng-Ren Xu¹, Chang-Cai Bai¹, Fei-Ran Zhou¹, Si-Kai Ling², Xiao-Ping Pu², Fei-Fei Li¹, Peng-Fei Tu¹

Affiliation

¹ State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, P. R. China
² Department of Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, P. R. China

Correspondence

Prof. Peng-Fei Tu

State Key Laboratory of Natural and Biomimetic Drugs
School of Pharmaceutical Sciences
Peking University Health Science Center
Beijing 100191
People's Republic of China
Tel.: +86/10/8280 2750
Fax: +86/10/8280 2750
pengfeitu@vip.163.com
Extraction and isolation

Compound 18 (200 mg) was obtained from Fr. 2 (9 g) by crystallizing in acetone. The rest of Fr. 2 (6.5 g) was subjected to silica gel CC (2.5 × 60 cm; 150 g) with PE-EtOAc (3:1, 1200 mL) to provide 17 (500 mg). The Fr. 5 (28 g) was subjected again to silica gel CC (4.0 × 80 cm; 500 g) with a gradient EtOAc-MeOH (50:1, 40:1, and 20:1, each 2.0 L) to give two portions (Fr. 5-1 and 5-2). 19 (75 mg) was obtained from deposit in Fr. 5-1 after filtering and washed by MeOH. Fr. 5-2 (12 g) was subjected to Sephadex LH-20 (4.0 × 60 cm; MeOH) to yield Fr. 5-2a and Fr. 5-2b, in which 2a (4 g) was further isolated by silica gel CC (2.0 × 60 cm; 60 g) with PE-acetone (3:4, 400 mL) to provide 16 (15 mg), and 2b (6.5 g) was also subjected to silica gel CC (2.0 × 60 cm; 90 g) with CHCl₃-MeOH (6:1, 450 mL) to yield 7 (180 mg).

The Fr. V (12 g) was further subjected to silica gel CC (3.0 × 60 cm; 150 g) with EtOAc-MeOH-H₂O (15:1:0.1, 800 mL), followed by purification with Sephadex LH-20 (2.0 × 60 cm; MeOH) to give 14 (102 mg). The Fr. VI (33 g) was subjected to silica gel CC (4.0 × 60 cm; 400 g) with EtOAc-MeOH-H₂O (12:1:0.1, 2000 mL) to afford 4 fractions (Frs. VI-1–VI-4). From the Fr. VI-1, 8 (82 mg) was obtained by crystallizing in MeOH. The Fr. VI-2 (8 g) was subjected to silica gel CC (3 × 50 cm; 110 g) with CHCl₃-MeOH-H₂O (5:1:0.1, 700 mL), then further isolated by ODS (2.0 × 60 cm) with MeOH-H₂O (2:8, 200 mL) and purified by Sephadex LH-20 (2.0 × 60 cm; MeOH, 220 mL) to provide 10 (15 mg), 15 (78 mg) and 13 (16 mg). Fr. VI-3 (6 g) was subjected to silica gel CC (1.5 × 50 cm; 40 g) with CHCl₃-MeOH-H₂O (8:1:0.1, 300 mL), then further subjected to Sephadex LH-20 (2.0 × 60 cm; MeOH, 200 mL) and ODS (2.0 × 60 cm) with MeOH-H₂O (3:7, 150 mL) to yield 3 (10 mg) and 11 (12 mg). The Fr. VII (11 g) was repeatedly chromatographed on silica gel (2.5 × 50 cm; 120 g) with EtOAc-MeOH-H₂O (20:1:0.1, 600 mL) and CHCl₃-MeOH-H₂O (6:1:0.1, 600 mL), followed by two Sephadex LH-20 (2.0 × 60 cm; MeOH, 200 mL) twice to yield 9 (8 mg). Compound 12 (130 mg) was given as dissoluble powders from Fr. VIII (4 g).

The n-BuOH extract (270 g) (F. ramontchii) was subjected to silica gel CC (10.0 × 1200 cm; 1.8 Kg) with a gradient CHCl₃-MeOH (0:1, 20:1, 10:1, 3:1, 1:1, and 0:1, each 3.5 L) to afford 13 fractions (Frs. A–O). Fr. I (8 g) was subjected to silica gel CC (2.0 × 60 cm; 100 g) with EtOAc-EtOH-H₂O (25:1:0.05, 800 mL) to give Frs. Ia–Id. Then, 23 (20 mg) was afforded by
crystallizing in acetone from Fr. Ib (1.2 g), and Fr. Id (1.5 g) was purified by Sephadex LH-20 (2.0 × 60 cm) with CHCl₃-MeOH (1:1, 150 mL) and ODS (1.5 × 50 cm) with MeOH-H₂O (3:7, 160 mL) to give 13 (10 mg). Fr. J (5 g) was subjected to silica gel CC (1.5 × 45 cm; 50 g) with EtOAc-EtOH-H₂O (20:1:0.5, 400 mL), then to Sephadex LH-20 (2.0 × 60 cm; MeOH, 200 mL) to obtain 22 (80 mg). Fr. K (10 g) was subjected to silica gel CC (2.5 × 50 cm; 120 g) with EtOAc-MeOH-H₂O (30:1:0.5, 600 mL) to obtain Frs. K₁–K₅, Fr. K₅ (3 g) was subjected to silica gel CC (1.0 × 30 cm; 20 g) again with EtOAc-EtOH-H₂O (10:1:0.5, 200 mL), then purified by Sephadex LH-20 (1.5 × 50 cm; MeOH, 120 mL) and ODS (1.5 × 40 cm, MeOH-H₂O = 3.3:6.7, 80 mL) to afford a mixture 20/21 (100 mg). Fr. L (10 g) was subjected to silica gel CC (3.5 × 50 cm; 200 g) with CHCl₃-EtOH-H₂O (2.5:1:0.1, 800 mL) and CHCl₃-EtOH-H₂O (1:1:0.1, 600 mL) to give Frs. L₁–L₄. Fr. L₃ (4 g) was applied on Sephadex LH-20 (3.0 × 50 cm; MeOH, 400 mL) to obtain 27 (25 mg) and 4 (50 mg), then purified by ODS (2.0 × 60 cm; MeOH-H₂O = 25:75, 280 mL) to afford 6 (20 mg), 24 (35 mg), 25 (50 mg) and 26 (100 mg); Fr. L₄ (4 g) was subjected to silica gel CC (1.5 × 50 cm; 30 g) with CHCl₃-MeOH (3:1, 250 mL), then CHCl₃-EtOH (2:1, 200 mL), followed by Sephadex LH-20 (2.0 × 60 cm; MeOH-H₂O = 7:3, 220 mL) and ODS (1.5 × 60 cm; MeOH-H₂O = 4:6, 130 mL) to give 5 (18 mg). Fr. M (9 g) was subjected to silica gel CC (3.0 × 50 cm; 120 g) with EtOAc-EtOH-H₂O (10:1:0.05, 600 mL), followed by Sephadex LH-20 (2.0 × 60 cm) with CHCl₃-MeOH (1:1, 300 mL), MeOH (150 mL), and MeOH-H₂O (7:3, 100 mL) successively to afford 28 (30 mg).
Fig. 1S Structure of 10, 18, 29–36, 38–40, benzoysalireposide and salireposide.
Fig. 2S ¹H-NMR spectrum of compound 1 (CD₃OD, 500 MHz)

Fig. 3S Enlarged ¹H-NMR spectrum of compound 1 (CD₃OD, 500 MHz)
Fig. 4S 13C-NMR spectrum of compound 1 (CD$_3$OD, 125 MHz)

Fig. 5S HRESI-MS spectrum of compound 1
Fig. 6S 1H-NMR spectrum of compound 2 (CD$_3$OD, 500 MHz)

Fig. 7S 13C-NMR spectrum of compound 2 (CD$_3$OD, 125 MHz)
Fig. 8S HRESI-MS spectrum of compound 2

Fig. 9S 1H-NMR spectrum of compound 3 (CD$_3$OD, 500 MHz)
Fig. 10S 13C-NMR spectrum of compound 3 (CD$_3$OD, 125 MHz)

Fig. 11S HRESI-MS spectrum of compound 3
Fig. 12S 1H-NMR spectrum of compound 4 (CD$_3$OD, 500 MHz)

Fig. 13S Enlarged 1H-NMR spectrum of compound 4 (CD$_3$OD, 500 MHz)
Fig. 14S 13C-NMR spectrum of compound 4 (CD$_3$OD, 125 MHz)

Fig. 15S HRESI-MS spectrum of compound 4
Fig. 16S 1H-NMR spectrum of compound 5 (DMSO-d_6, 500 MHz)

Fig. 17S Enlarged 1H-NMR spectrum of compound 5 (DMSO-d_6, 500 MHz)
Fig. 18S Enlarged 1H-NMR spectrum of compound 5 (DMSO-d_6, 500 MHz)

Fig. 19S 13C-NMR spectrum of compound 5 (DMSO-d_6, 125 MHz)
Fig. 20S HRESI-MS spectrum of compound 5

Fig. 21S CD spectrum of compound 5
Fig. 22S 1H-NMR spectrum of compound 6 (CD$_3$OD, 500 MHz)

Fig. 23S Enlarged 1H-NMR spectrum of compound 6 (CD$_3$OD, 500 MHz)
Fig. 24S 13C-NMR spectrum of compound 6 (CD$_3$OD, 125 MHz)

Fig. 25S HRESI-MS spectrum of compound 6
Fig. 26S CD spectrum of compound 6