Supporting Information to:

Spiraeosides A and B, Two New Diterpenoid Glucosides from

Spirea japonica var. ovalifolia

Guoying Zuo¹,²,³, Hongping He², Yuemao Shen², Xiaojie Xu³, Zheming Wang⁴, Chunhua Yan⁴, Xiaojiang Hao²

Affiliation
¹ Kunming General Hospital, Kunming, P.R. China
² State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, P.R. China
³ College of Chemistry and Molecular Engineering, Peking University, Beijing, P.R. China
⁴ Peking University, Nonius B. V. Demo Lab for X-Ray Diffraction, Beijing, P.R. China

Correspondence

Prof. Xiaojiang Hao
State Key Laboratory of Phytochemistry and Plant Resources in West China
Kunming Institute of Botany
Chinese Academy of Sciences
Kunming 650204
People’s Republic of China
Tel.: +86 0871 5223070
Fax: +86 0871-5223070
haoxj@mail.kib.ac.cn

General experimental procedures

Melting points were determined using a Kofler micro-melting point apparatus and are uncorrected. Optical rotations were determined on a Horiba SEPA-300 polarimeter. IR spectra
were obtained on KBr pellets using a Bio-Rad FTS-135 spectrophotometer. 1D and 2D NMR spectra were recorded on Bruker AM-400 and Bruker DRX-500 spectrometers, respectively, using TMS as internal standard. EI-MS, FAB-MS, and HR-FAB-MS measurements were carried out on a VG Auto Spec-3000 spectrometer. Column chromatography was performed on silica gel H (10–40 μm; Qingdao Marine Chemical Factory), Sephadex LH-20 (40–70 μm, Amersham Pharmacia Biotech AB, Uppsala, Sweden), and macroporous resin (D-101 type, 500 μm; Tianjin, China).

Compound 1: Colorless needles (MeOH), m.p. 267–268 °C, [α]D23: −70.31 (c 2.55, MeOH); IR (KBr): 3494 (OH), 2958, 1380, 1377, 1171, 1075, 1031, 1032, 960, 900 cm⁻¹; EI-MS: m/z = 332 (M − C₆H₁₀O₅, 13), 315 (M − OH − C₆H₁₀O₅, 32), 286 (M − 315 − CH₃, 100), 268 (15), 257 (23), 239 (30), 201 (12), 180 (3), 163 (C₆H₁₀O₅, 5), 159 (20), 131 (20), 105 (25), 91 (41), 73 (64); FAB-MS: m/z = 493 (M − H, 42), 331 (M − C₆H₁₁O₅, 70), 315 (M − OH − C₆H₁₀O₅, 7), 161 (100); HR-FAB-MS: m/z = 493.2407 (calcd. for C₂₆H₃₇O₉: 493.2438).

Compound 2: Crystalline solid (MeOH), m.p. 280–281 °C, [α]D23: −4.13 (c 2.42, MeOH); IR (KBr): 3334 (OH), 2927, 1726 (C=O), 1380, 1317, 1132, 1074, 1039, 1021, 912, 824 cm⁻¹; EI-MS: m/z = 332 (M − C₆H₁₀O₅, 13), 315 (M − OH − C₆H₁₀O₅, 45), 298 (M − 2OH − C₆H₁₀O₅, 43), 286 (M − 315 − CH₃, 20), 270 (38), 256 (15), 239 (22), 202 (23), 180 (5), 163 (C₆H₁₀O₅, 7), 159 (19), 131 (38), 105 (47), 91 (89), 73 (100); FAB-MS: m/z = 493 (M − H, 100), 331 (M − C₆H₁₁O₅, 40), 315 (M − OH − C₆H₁₀O₅, 16), 161 (17); HR-FAB-MS: m/z = 493.2407 (the same as that of 1).

Enzymatic hydrolysis of 1 and 2

A solution of 1 (5 mg) and β-D-glucosidase (10 mg) in acetate buffer (5 mL, pH 5) was incubated at 37 °C for 5 days followed by extraction with Et₂O. The Et₂O layer contained 1a and 2a by TLC (on a silica gel H plate, petroleum–EtOAc, 5:1), and the aqueous layer contained glucose by TLC (on a microcrystalline cellulose plate, n-BuOH–pyridine–H₂O, 6:4:3), which were in agreement with the corresponding authentic samples.
X-ray crystal structure analysis of 1 [1]

Crystal data: C_{26}H_{38}O_{9}, MW 494.56; monoclinic, space group P2_12_12_1; a = 11.4146 (4), b = 7.3288 (2), c = 13.9662 (6) Å. Crystal shape/crystal color: plate/colorless; V = 1159.70 (7) Å³; Z = 2; D_{calc} = 1.165 g/cm³; Mo Kα (λ = 0.71073 Å). The data were collected on a NONIUS Kappa CCD diffractometer with a graphite monochromator. Mo Kα radiation using a colorless crystal with dimensions of 0.40 × 0.27 × 0.10 mm³: maximum 2θ value 54.97°; reflections collected/unique: 22024/5255 [R (int.) = 0.0669]; reflections with I > 2σ(I): 3688.

Refinement method: full-matrix least-squares on F² (goodness-of-fit on F²: 0.972); data/restraints/parameters: 5255/1/322. The structure was solved by the direct method SHELX-97 and expanded using difference Fourier techniques and was refined by the program SHELXL-97 and full-matrix least-squares calculations. Hydrogen addition/treatment: geom./mixed. The final R indices [I > 2σ(I)] were R1 (F) = 0.0443 and wR2 (F²) = 0.0772.

The CCDC deposit number is 184690.

References

1 Crystallographic data for compound 1 have been deposited at the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44-1223-336033 or e-mail: deposit@ccdc.cam.ac.uk). Copies can be obtained on request, free of charge, by quoting the publication citation and the deposit number 184690.
Fig. 1S 1H-NMR spectrum of spiraeoside A (1) in C$_3$D$_3$N.
Fig. 2S 13C-NMR spectrum of spiraeoside A (1) in C$_5$D$_5$N.
Fig. 3S HSQC spectrum of spiraeoside A (1) in C$_3$D$_5$N.
Fig. 4S HMBC spectrum of spiraeoside A (1) in C$_3$D$_3$N.
Fig. 5S COSY spectrum of spiraeoside A (1) in C$_3$D$_5$N.
Fig. 6S ROESY spectrum of spiraeoside A (1) in C₅D₅N.
Fig. 7S FAB-MS spectrum of spiraeoside A (1).
Fig. 8S IR spectrum of spiraeoside A (1).
Fig. 9S 1H-NMR spectrum of spiraeoside B (2) in C$_3$D$_3$N.
Fig. 10S 13C-NMR spectrum of spiraeoside B (2) in C$_5$D$_3$N.
Fig. 11S HSQC spectrum of spiraeoside B (2) in C₅D₅N.
Fig. 12S HMBC spectrum of spiraeoside B (2) in C$_5$D$_5$N.
Fig. 13S COSY spectrum of spiraeoside B (2) in C$_5$D$_5$N.
Fig. 14S FAB-MS of spiraeoside B (2).
Fig. 15S IR spectrum of spiraeoside B (2).