Supporting Information

Bioactive diterpenes from the aerial parts of *Anisochilus harmandii*

Ratsami Lekphrom, Somdej Kanokmedhakul, Kwanjai Kanokmedhakul

Affiliation

Natural Products Research Unit, Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand

Correspondence

Assoc. Prof. Dr. Somdej Kanokmedhakul

Natural Products Research Unit
Department of Chemistry and Center for Innovation in Chemistry
Faculty of Science
Khon Kaen University
Khon Kaen 40002
Thailand
Tel.: +66/43/202222/41 ext. 12243, 12370/4
Fax: +66/43/202373
somdej@kku.ac.th
Extraction and isolation

Air-dried aerial parts of *A. hamandii* (0.8 kg) were ground into powder and then extracted successively with hexane (3 x 3 L), EtOAc (3 x 3 L), and MeOH (3 x 3 L). Removal of solvents from each extract under reduced pressure gave hexane (21.8 g, 2.75 %), EtOAc (11.8 g, 1.47 %), and MeOH (12.2 g, 1.52 %) extracts, respectively. The hexane extract (20.0 g) was separated on silica gel (230-400 mesh, 180 g) flash column chromatography (FCC, 8 x 30 cm), eluted with a gradient system of hexane-EtOAc and EtOAc-MeOH to give 6 fractions, HF1- HF6 [HF1 (200 mL), HF2 (400 mL), HF3 (400 mL), HF4 (600 mL), HF5 (600 mL), HF6 (800 mL)]. Fraction HF2 (hexane-EtOAc, 60:40, 400 mL, 3.5 g,) was purified by silica gel (230-400 mesh, 60 g) FCC (4 x 50 cm) and gradually eluted with hexane-EtOAc and EtOAc-MeOH to give 4 subfractions, HF2.1-HF2.4. Subfraction HF2.2 (hexane-EtOAc, 50:50, 100 mL, 2.4 g) was purified by preparative TLC using hexane-EtOAc (80:20) as eluent to yield colorless crystals of 3 (Rf = 0.44, 30.2 mg). Subfraction HF2.4 (hexane-EtOAc, 10:90, 100 mL, 163 mg) was further purified by preparative TLC using CH2Cl2-MeOH (95:5) as eluent to give a white solid of 4 (Rf = 0.44, 33.9 mg). Fraction HF3 (hexane-EtOAc, 50:50, 400 mL, 2.4 g) was purified on silica gel (70-230 mesh, 40 g) column chromatography (CC, 2.5 x 60 cm), gradually eluted with hexane-EtOAc and EtOAc-MeOH to give 5 subfractions, HF3.1-HF3.5. Subfraction HF3.4 (hexane-EtOAc, 70:30, 100 mL, 156 mg) was purified by preparative TLC, using CH2Cl2-EtOAc (80:20) as eluent to yield a white amorphous solid of 5 (Rf = 0.35, 26.7 mg). Subfraction HF3.5, (hexane-EtOAc, 40:60, 100 mL, 83 mg) was purified by preparative TLC, using hexane-CH2Cl2-MeOH (28:70:3) as eluent (developed x 3) to yield a white amorphous solid of 6 (Rf = 0.33, 14.0 mg) and 1 (Rf = 0.22, 9.2 mg). Fraction HF4 (hexane-EtOAc, 30:70, 600 mL, 1.0 g) was purified on silica gel (70-230 mesh, 30 g) CC (2.5 x 60 cm), gradually eluted with hexane-EtOAc and EtOAc-MeOH to give 6 subfractions, HF4.1-HF4.6. Subfraction HF4.2 (hexane-EtOAc, 70:30, 200 mL, 298 mg) was
separated on silica gel (70-230 mesh, 15 g) CC (1.5 x 60 cm), gradually eluted with CH$_2$Cl$_2$-MeOH and MeOH to give 4 subfractions, HF$_{4.2.1}$-HF$_{4.2.4}$. Subfraction HF$_{4.2.2}$ (CH$_2$Cl$_2$-MeOH, 95:5, 300 mL, 113 mg) afforded a white amorphous solid of 7 [$R_f = 0.31$ (CH$_2$Cl$_2$-MeOH, 94:6), 6.7 mg]. Subfraction HF$_{4.2.4}$ (CH$_2$Cl$_2$-MeOH, 93:7, 100 mL, 41.1 mg) afforded an additional amount of compound 1 (4.3 mg). Subfraction HF$_{4.4}$ (hexane-EtOAc, 60:40, 200 mL, 213 mg) was purified on silica gel 15g CC (1.5 x 60), gradually eluted with CH$_2$Cl$_2$-MeOH to give a white amorphous solid of 8 [$R_f = 0.24$ (CH$_2$Cl$_2$-MeOH, 94:6), 5.0 mg]. Subfraction HF$_{4.5}$ (CH$_2$Cl$_2$-MeOH, 94:6, 100 mL) was further purified by preparative TLC using EtOAc-MeOH (98:2) as eluent to give an additional amount of 1 ($R_f = 0.33$, 43.9 mg).

Fraction HF$_5$ (hexane-EtOAc, 70:30, 400 mL, 0.6 g) was purified by preparative TLC, using hexane-EtOAc-MeOH (50:49:1) as eluent to yield an amorphous solid of 3 ($R_f = 0.48$, 9.7 mg). The EtOAc extract (11.0 g) was separated on silica gel (230-400 mesh, 180 g) FCC (8 x 30 cm), eluted with a gradient system of hexane-EtOAc and EtOAc-MeOH to give 6 fractions, EF$_1$-EF$_6$. Fraction EF$_4$ (hexane-EtOAc, 40:60, 100 mL, 172 mg) was subjected to silica gel CC, eluted with gradient systems of hexane-EtOAc and EtOAc-MeOH to yield 6 subfractions designated as EF$_{4.1}$-EF$_{4.6}$. Subfraction EF$_{4.4}$ was purified by preparative TLC using hexane-EtOAc (30:70) as eluent to yield a white amorphous solid of 9 ($R_f = 0.55$, 4.5 mg). Fraction EF$_{4.5}$ (hexane-EtOAc, 30:70, 100 mL, 124 mg) was further purified by preparative TLC using hexane-EtOAc (30:70) as eluent to give a white amorphous solid of 2 ($R_f = 0.46$, 69.1 mg). Fraction EF$_6$ (hexane-EtOAc, 20:80, 400 mL, 2.4 g) was chromatographed on silica gel (230-400 mesh, 30 g) FCC (2.5 x 60 cm), eluted with gradient systems of hexane-EtOAc and EtOAc-MeOH to give 4 subfractions, EF$_{6.1}$-EF$_{6.4}$. Subfraction EF$_{6.3}$ (hexane-EtOAc, 30:70, 100 mL, 126.5 mg) was purified by preparative TLC, using hexane-EtOAc (30:70) as eluent to yield a white amorphous solid of 10 ($R_f = 0.37$, 36.1 mg).
Bioassays:

Antiplasmodial activity was evaluated against the parasite *Plasmodium falciparum* (K1, multidrug resistant strain), using the method of Trager and Jensen [12]. Quantitative assessment of malarial activity *in vitro* was determined by means of the microculture radioisotope technique based upon the method described by Desjardins et al. [13]. The inhibitory concentration (IC₅₀) represents the concentration which causes 50% reduction in parasite growth as indicated by the *in vitro* incorporation of [³H]-hypoxanthine by *P. falciparum*. The standard compound dihydroartemisinin (99%) was in-house supplied by Dr. Bongkoch Tarnchompoo, BIOTEC (Table 2).

The antimycobacterial activity was assessed against *M. tuberculosis* H37Ra using the Microplate Alamar Blue Assay (MABA) [14]. Standard drugs, isoniazid (> 99%) and kanamycin sulfate (> 95%), were obtained from Sigma (Table 2).

The cytotoxic assays against human epidermoid carcinoma (KB), human small cell lung cancer (NCI-H187), and human breast cancer (MCF-7) cell lines were performed employing the colorimetric method as described by Skehan et al. [15]. The reference substances were ellipticine (> 95%) and doxorubicin (> 95%) from Sigma and Ebewe, respectively (Table 2).