Supporting Information

Anti-adipogenic activities of *Alnus incana* and *Populus balsamifera* bark extracts, Part I: Sites and mechanisms of action

Louis C. Martineau 1,3, Jessica Hervé 1,3, Asim Muhammad 2,3, Ammar Saleem 2,3, Cory S. Harris 2,3, John T. Arnason 2,3, Pierre S. Haddad 1,3

Affiliation

1 Natural Health Products and Metabolic Diseases Laboratory, Dept. of Pharmacology, Université de Montréal, Montreal, Quebec, Canada
2 Phytochemistry, Medicinal Plant and Ethnopharmacology Laboratory, Dept. of Biology, University of Ottawa, Ottawa, Ontario, Canada
3 Canadian Institutes of Health Research Team in Aboriginal Antidiabetic Medicines

Correspondence

Dr. Pierre S. Haddad

Dept. of Pharmacology
Université de Montréal
P.O. Box 6128 Centre-Ville
Montreal, Quebec
H3C 3J7
Canada
Tel.: +1/514/343 6590
Fax: +1/514/343 2291
pierre.haddad@umontreal.ca
Effects of *Alnus incana* and *Populus balsamifera* on lipolysis in 3T3-L1 adipocytes

Lipolysis

The effect of extract treatment on lipolysis of intracellular triglyceride stores was assessed in fully mature and triglyceride-laden adipocytes on their 8th day of differentiation. Cell medium was changed immediately prior to the start of the experiment and medium was collected at the end of a 24 h treatment period. The experiment was conducted in serum- and insulin-supplemented differentiation medium. Glycerol content in the medium was quantified with Free Glycerol Reagent (Sigma-Aldrich), according the manufacturer’s instructions. Epinephrine (purity ≥ 98%; Sigma-Aldrich) was used as a positive control.

These experiments served to test whether the induction of lipolysis could contribute to the observed inhibition of triglyceride accumulation. The effect of a 24 h extract treatment on glycerol release was thus measured in fully mature adipocytes undergoing their 8th day of culture in adipogenic conditions. Epinephrine (1 μM), used as a positive control, more than doubled the amount of glycerol released into the culture medium over the 24 h culture period. *Alnus* did not significantly increase glycerol release. However, *Populus* increased lipolysis by slightly more than 50%. Assessment of intracellular triglyceride content by AdipoRed dye showed no difference between groups, indicating that triglyceride content reduction through lipolysis was below the threshold of detection (not shown).
Supplemental figure 1S

![Bar chart showing Glycerol Release (ug/well/24 h) for different treatments: Vehicle, Alnus, Populus, Epinephrine.](image)

Fig. 1S: *Populus balsamifera* extract stimulates lipolysis in fully mature 3T3-L1 adipocytes. Glycerol released into the culture medium as a result of lipolysis over a 24 h treatment period with vehicle, extract, or 1 μM epinephrine in 3T3-L1 adipocytes undergoing their 8th day of differentiation was assessed using a standard kit. Treatment was conducted in complete medium without insulin supplementation. Data are presented as mean ± SEM for n=6 combined from 2 separate experiments. * indicates a significant (p≤0.05) difference from the vehicle-treated control group.