Supporting Information to:

Phytochemical Characterization of *Rhododendron ferrugineum* and
in vitro Assessment of an Aqueous Extract on Cell Toxicity

Andrea Louis, Frank Petereit, Matthias Lechtenberg, Alexandra Deters, Andreas Hensel

Affiliation
Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Münster, Germany

Correspondence

Prof. Dr. Andreas Hensel

University of Münster
Institute of Pharmaceutical Biology and Phytochemistry
Hittorfstraße 56
48149 Münster
Germany
Phone: +49/251/83 33380
Fax: +49/251/83 38341
ahensel@uni-muenster.de
Analytical Data of Isolated Compounds Already Known from Published Literature

Gossypetin 3-O-β-D-galactopyranoside (10): ESI-MS: [M+Na]⁺ m/z 503; ¹H-NMR (CD₃OD, 400 MHz): δ 7.96 (1H, d, J = 1.9 Hz, H-2’), 7.72 (1H, dd, J = 1.9 and 8.5 Hz, H-6’), 6.87 (1H, d, J = 8.5 Hz, H-5’), 6.27 (1H, s, H-6), 5.13 (1H, d, J = 7.8 Hz, H-1’), 3.84 (1H, H-4’), 3.82 (1H, H-2’), 3.55 (1H, H-3’), 3.63 (1H, H-6’a), 3.54 (1H, H-6’b), 3.46 (1H, H-5’). ¹³C-NMR (CD₃OD, 100 MHz): δ 150.1 (C-2), 135.7 (C-3), 179.9 (C-4), 155.0 (C-5 and C-7), 99.7 (C-6), 126.3 (C-8), 146.6 (C-9), 105.4 (C-10), 123.2 (C-1’), 118.2 (C-2’), 145.8 (C-3’), 158.9 (C-4’), 116.1 (C-5’), 123.4 (C-6’), 105.8 (C-1’), 70.1 (C-2’), 75.3 (C-3’), 73.4 (C-4’), 77.3 (C-5’), 62.0 (C-6’).

Gossypetin 3-O-β-D-glucopyranoside (11): ESI-MS: [M+Na]⁺ m/z 503; ¹H-NMR (CD₃OD, 400 MHz): δ 7.83 (1H, d, J = 1.9 Hz, H-2’), 7.72 (1H, dd, J = 1.9 and 8.5 Hz, H-6’), 6.87 (1H, d, J = 8.5 Hz, H-5’), 6.27 (1H, s, H-6), 5.22 (1H, d, J = 7.6 Hz, H-1’), 3.70 (1H, H-6’a), 3.57 (1H, H-6’b), 3.48 (1H, H-2’), 3.42 (1H, H-3’), 3.34 (1H, H-4’), 3.21 (1H, H-5’). ¹³C-NMR (CD₃OD, 100 MHz): δ 150.0 (C-2), 135.7 (C-3), 179.9 (C-4), 155.0 (C-5 and C-7), 99.7 (C-6), 126.3 (C-8), 146.6 (C-9), 105.4 (C-10), 123.2 (C-1’), 118.0 (C-2’), 146.0 (C-3’), 159.2 (C-4’), 116.1 (C-5’), 123.6 (C-6’), 104.7 (C-1’), 78.3 (C-2’), 75.9 (C-3’), 71.3 (C-4’), 78.5 (C-5’), 62.7 (C-6’).

6,8-Dimethylnaringenin (farrerol) (1): ESI-MS: [M+H]⁺ m/z 301; ¹H-NMR (CD₃OD, 400 MHz): δ 7.32 (2H, d, J = 8.5 Hz, H-2’ and H-6’), 6.82 (2H, d, J = 8.5 Hz, H-3’ and H-5’), 5.28 (1H, d, J = 12.7 Hz, H-2), 3.05 (1H, m, H-3a), 2.69 (1H, m, H-3b), 1.99 (3H, s, CH₃ at C6), 1.98 (3H, s, CH₃ at C8). ¹³C-NMR (CD₃OD, 100 MHz): δ 198.5 (C-2), 164.3 (C-7), 160.4 (C-5), 159.4 (C-4’), 158.9 (C-9), 131.7 (C-1’), 129.0 (C-2’ and C-6’), 116.5 (C-3’ and C-5’), 104.9 (C-10), 104.2 (C-6), 103.4 (C-8), 80.2 (C-2), 44.2 (C-3), 8.3 (CH₃ at C6), 7.6 (CH₃ at C-8).

Configuration at C2 was not determined.

Poriol 7-O-β-D-glucopyranoside (poriolin) (2): ESI-MS: [M+Na]⁺ m/z 471; ¹H-NMR (CD₃OD, 400 MHz): δ 7.32 (2H, d, J = 8.5 Hz, H-2’ and H-6’), 6.81 (2H, d, J = 8.5 Hz, H-3’ and H-5’),
6.30 (1H, s, H-8), 5.35 (1H, dd, J = 2.8 and 13.1 Hz, H-2), 4.99 (1H, d, J = 7.2 Hz, H-1’’), 3.86 (1H, dd, J = 1.8 and 12.1 Hz, H-6’’a), 3.67 (1H, dd, J = 5.3 and 12.1 Hz, H-6’’b), 3.53 – 3.34 (4H, H-2’’, H-3’’, H-4’’ and H-5’’), 3.15 (1H, dd, J = 13.1 and 17.1 Hz, H-3a), 2.72 (1H, dd, J = 2.8 and 17.1 Hz, H-3b), 2.02 (3H, s, \text{CH}_3). 13C-NMR (CD$_3$OD, 100 MHz): δ 80.9 (C-2), 44.5 (C-3), 198.9 (C-4), 161.9 (C-5), 104.7 (C-6), 164.9 (C-7), 95.2 (C-8), 162.7 (C-9), 107.8 (C-10), 131.2 (C-1’), 129.2 (C-2’ and C-6’), 116.4 (C-3’ and C-5’), 159.2 (C-4’), 101.4 (C-1’’), 78.4, 78.2, 74.9 and 71.3 (C-2’’-C-5’’), 62.5 (C-6’’). Configuration at C2 not determined.

2R,3R-taxifolin 3-O-β-L-arabinopyranoside (5): ESI-MS: [M-H] m/z 435; [α]$_{20}^{20}$ = + 26.72 (c 0.1048, MeOH); CD (MeOH): [θ]$_{224}$ 30581, [θ]$_{252}$ 7715, [θ]$_{295} - 31557$, [θ]$_{328}$ 10360. 1H-NMR (CD$_3$OD, 400 MHz): δ 6.97 (1H, d, J = 1.9 Hz, H-2’), 6.85 (1H, dd, J = 1.9 and 8.1 Hz, H-6’), 6.79 (1H, d, J = 8.1 Hz, H-5’), 5.92 (1H, d, J = 2.1 Hz, H-6’), 5.90 (1H, d, J = 2.1 Hz, H-8), 5.13 (1H, d, J = 10.6 Hz, H-2), 4.80 (1H, d, J = 10.6 Hz, H-3), 3.83 (1H, d, J = 3.8 Hz, H-1’), 3.59 (1H, dd, J = 3.8 and 6.0 Hz, H-2’’), 3.55 (1H, dd, J = 3.4 and 6.0 Hz, H-3’’), 3.80 (1H, dt, J = 3.4, 3.4 and 7.2 Hz, H-4’), 3.92 (1H, dd, J = 7.2 and 11.6 Hz, H-5’’a), 3.38 (1H, dd, J = 3.6 and 11.6 Hz, H-5’’b). 13C-NMR (CD$_3$OD, 100 MHz): δ 83.9 (C-2), 76.4 (C-3), 196.2 (C-4), 165.6 (C-5), 97.6 (C-6), 169.3 (C-7), 96.6 (C-8), 164.4 (C-9), 102.5 (C-10), 129.1 (C-1’), 115.8 (C-2’), 146.7 (C-3’), 147.6 (C-4’), 116.4 (C-5’), 120.9 (C-6’), 101.5 (C-1’’), 71.2 (C-2’’), 73.2 (C-3’’), 66.9 (C-4’’), 63.5 (C-5’’).

Arbutin content

HPLC quantification of arbutin (Roth; 99.2% purity, HPLC) using Ph. Eur., monograph “Uvae ursi folium” with external calibration against arbutin reference standard (Roth, content 99.3 %). Detection limit: 0.5 µg/mL, corresponding to 0.01 % in dried leave material with a signal-noise ratio of 3:1 (HPLC Shimadzu; SCL/CTO/SIL/SPD/LC-10A VP). For TLC investigations on arbutin a methanol/water extract (1:1 V/V) of leaf material was compared semi-quantitatively to serial dilutions of arbutin reference standard on silica gel 60 F$_{254}$ 0.2 mm (Merck), with
Pulverized leaf material (100 g, batch 2) was extracted three times at 8 °C with 1 L of water for 20 h. Extracts obtained after centrifugation (15,000 × g, 15 min) were combined and concentrated (< 40 °C). High molecular constituents were precipitated in ethanol (4 L). The precipitate was isolated by centrifugation (15,000 × g), suspended in 20 mL of water, dialysed (Cellulose membranes, MWCO 3500 Da; Roth) and lyophilized to yield 1.0 g raw polysaccharides (RPS). RPS was fractionated by AEC on DEAE-Sephacel® (30 x 2.5 cm; General Health Care) in the phosphate form and elution by a step gradient of deionized water, sodium phosphate buffers pH 6.0, ion strength 0.1, 0.25, 0.5, 1 mol/L, and 0.05 N NaOH, flow 100 mL/h, fraction size 2 mL. Carbohydrate-containing fractions were pooled, concentrated under vaccuum, dialyzed and lyophilized.

Carbohydrate analysis
Total carbohydrates in AEC- and FPLC-fractions were assayed using the resorcinol-sulphuric acid test [1]. Determination of total uronic acids was performed according to the method of Blumenkrantz [2] with o-hydroxydiphenyl modified for 96-well-microtiter plates using a mixture of glucuronic acid and galacturonic acid as reference. Quantification of monomeric carbohydrates was accomplished on ion-exchange HPLC with pulsed-amperometric detection (Dionex), Bio LC, with AS50 autosampler, G50 gradient pump, AS50 oven and ED50 electrochemical detector on a CarboPac™ PA1, analytical column, 2 x 250 mm, CarboPac™ PA1, guard column 2 x 50 mm and BorateTrap™ Trap, 4 x 50 mm. Elution with gradient program using water and NaOH 0.1 M for neutral sugars, and ternary gradient water, NaOH 0.1 M and NaOAc 0.5 mM for uronic acids. Polysaccharides were hydrolyzed with trifluoroacetic acid 2 mol/L at 121 °C for 1 h. Interglycosidic linkage of neutral sugars was analyzed using the partially methylated alditol acetates (PMAA) by GC-MS [3, 4]. GC was performed on an Agilent 6890N GC-MS system with mass selective detector on a HP5MS fused silica capillary column (i.d. 0.25 mm x 30 m, film thickness 0.25 µm) with helium as a carrier gas (1.5 bar). Reduction of acidic
polysaccharides to the carboxyl-reduced polymers was accomplished in the presence of carboximide and NaBH₄ following the method of [5]. The determination of molecular weight distribution of polysaccharides was performed by FPLC on a Superose® 6 column (GE Healthcare) using standard dextrans for calibration. Void volume was determined with DextranBlue®. Quantification of residual protein was performed using standard BSA (Applichem, content 98 %) as a reference [6].

Fig. 1S Anion exchange chromatography of RPS from *R. ferrugineum* on DEAE Sephacel® using a step gradient of water and 0.1 M, 0.25 M, 0.5 M and 1 M sodium phosphate buffer (SPB). Fraction size 2 mL. Numbers and lines indicated represent the pooled fractions.
References

5 Taylor RL, Conrad HE. Stoichiometric depolymerization of polyuronides and glycosaminoglycuronans to monosaccharides following reduction of their carbodiimide-activated carboxyl groups. Biochemistry 1972; 11: 1383-1388.