Supporting Information to:

Two New Sesquiterpenes from *Acorus calamus*

Weiwei Dong²,⁴, Minjie Li³, Dajian Yang², Runhua Lu¹

Affiliation

¹ Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, P.R. China
² State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Shenzhen, P.R. China
³ Department of Chemistry, Shanghai University, Shanghai, P.R. China
⁴ Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P.R. China

Correspondence

Prof. Dr. Runhua Lu
Department of Applied Chemistry
College of Sciences
China Agricultural University
Beijing 100094
People’s Republic of China
Tel.: +86-10-6273-6957
Fax: +86-10-6273-6777
rhlu@cau.edu.cn or rhlu.cn@gmail.com

General experimental procedures

Optical rotations were measured on a Perkin-Elmer polarimeter model 341 using a sodium lamp (589 nm) at 25 °C. ¹H- and ¹³C-NMR spectra were recorded on a Bruker AV-600 spectrometer at 600 and 150 MHz, respectively; HMBC and NOESY experiments were performed in the same spectrometer, using standard Varian pulse sequences. High-resolution mass spectra were measured on a Bruker BioTOF-Q.
time-of-flight mass spectrometer, using ESI+ mode. ESI-MS were measured on a Finnigan LCQDECA ion-trap mass spectrometer. UV spectra were recorded on a Perkin-Elmer UV/Vis Lambda 35 spectrophotometer. Column chromatography was carried out on silica gel (Qingdao Marine Chemical Group Co.). TLC was carried out using silica gel 60 (>230 mesh; Qingdao Marine Chemical Group Co.) and precoated silica gel 60 GF\textsubscript{254} plates. Spots on TLC were visualized under UV light and/or by spraying with anisaldehyde-H\textsubscript{2}SO\textsubscript{4} reagent followed by heating.
Fig. 1S 1H-NMR spectrum of 1.
Fig. 2S 13C-NMR spectrum of 1.
Fig. 3S 1H–1H COSY spectrum of 1.
Fig. 4S HSQC spectrum of 1.
Fig. 5S HMBC spectrum of 1.
Fig. 6S 1H-NMR spectrum of 2.
Fig. 7S 13C-NMR spectrum of 2.
Fig. 8S HSQC spectrum of 2.
Fig. 9S HMBC spectrum of 2.
Fig. 10S NOESY spectrum of 2.