Grape seed proanthocyanidin extract attenuates airway inflammation and hyperresponsiveness in a murine model of asthma by downregulating inducible nitric oxide synthase
Dan-yang Zhou¹, Qiang Du², Ruo-ran Li³, Mao Huang⁴, Qian Zhang¹, Guo-zhen Wei¹

Affiliation

¹ Department of Respiratory Medicine, Changzhou No.2 People’s Hospital Affiliated to Nanjing Medical University, Changzhou, China
² Department of Respiratory Medicine, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
³ Department of Respiratory Medicine, Xuzhou Central Hospital, Xuzhou, China
⁴ Department of Respiratory Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China

Correspondence

Qian Zhang, PhD; Guo-zhen Wie, Professor
Fig. 1S High performance liquid chromatography chromatogram of grape seed proanthocyanidin extracts.
Fig. 2S Treatment with GSPE attenuates airway inflammation and antigen-induced mucus production in a murine model of asthma.

(a-g) Haematoxylin and eosin staining (original magnification ×400) of lung tissue from (a) control, (b) OVA-sensitized and -challenged, (c) BUD-treated mice, (d) GSPE1 (20 mg/kg)-treated mice, (e) GSPE2 (40 mg/kg)-treated mice, and (f) GSPE3 (60 mg/kg)-treated mice. (g-l) Periodic acid-Schiff (PAS) staining (original magnification ×400) of lung tissue from (g) control, (h) OVA, (i) BUD-treated mice, (j)
GSPE1-treated mice, (k) GSPE2-treated mice, and (l) GSPE3-treated mice.

Fig. 3S Qualitative measure of iNOS expression in the lungs via immunostaining.

(a-g) Immunostaining (original magnification ×400) of lung tissue from (a) control, (b) OVA-sensitized and -challenged, (c) budesonide, (d) GSPE1 (20 mg/kg)-, (e) GSPE2 (40 mg/kg)-, and (f) GSPE3 (60 mg/kg)-treated mice.