Supporting Information

9β-Hydroxyparthenolide esters from Inula montbretiana and their antiprotozoal activity

Alper Gökbulut1,*, Marcel Kaiser2, Reto Brun2, Engin Sarer1, Thomas J. Schmidt3,†

Affiliation

1 Ankara University, Faculty of Pharmacy, Department of Pharmacognosy, Ankara, Turkey
2 Swiss Tropical and Public Health Institute (STPH) and University of Basel, Basel, Switzerland
3 Institute of Pharmaceutical Biology and Phytochemistry (IPBP), University of Münster, Münster, Germany

* Part of thesis. The phytochemical part of this work was performed at the Institute of Pharmaceutical Biology and Phytochemistry, Münster, in March-May 2010.

† In memory of Dr. rer. nat. Detlef A. W. Wendisch, formerly Abt. ZF-DZA Strukturforschung, Bayer AG, Leverkusen, deceased on July 24, 2011.

Correspondence

\textit{Prof. Dr. Thomas J. Schmidt}

Institute of Pharmaceutical Biology and Phytochemistry (IPBP)

University of Münster

Hittorfstraße 56

D-48149 Münster

Germany
Fig. 1S Mass spectrum and formula report for compounds 1a+1b.
Fig. 2S Mass spectrum and formula report for compounds 2a and 2b.
Fig. 3S Mass spectrum and formula report for compound 3.

Fig. 4S Mass spectrum and formula report for compound 4.
Fig. 5S CD and UV spectrum of compounds 1a+1b.

Fig. 6S CD and UV spectrum of compounds 2a+2b.

Fig. 7S CD and UV spectrum of compound 3.
Fig. 8S CD and UV spectrum of compound 4.
Fig. 9S \(^1\)H-NMR spectrum (400 MHz) of compounds 1a+1b.
Fig. 10S 1H/1H-NOESY spectrum (400 MHz, expansion 3.0-1.1 ppm; only positive NOEs plotted) of compounds 1a+1b. The 3D model represents a low energy conformer of 1a. The NOEs highlighted in circles are shown as arrows.
Fig. 11S 13C-NMR spectrum (100 MHz) of compounds 1a+1b.
Fig. 12S 1H-NMR spectrum (400 MHz) of compounds 2a+2b.
Fig. 13S 13C-NMR spectrum (125 MHz) of compounds 2a+2b in mixture with 1a+1b (only signals of 2a+2b labeled).
Fig. 14S 1H-NMR spectrum (400 MHz) of compound 3.
Fig. 15 13C-NMR spectrum (100 MHz) of compound 3.
Fig. 16 1H-NMR spectrum (100 MHz) of compound 4.
Fig. 17 13C-NMR spectrum (100 MHz) of compound 4.