Supporting Information

Cycloartane Triterpenes and Ingol Diterpenes Isolated from *Euphorbia neriifolia* in a Screening Program for Death-Receptor Expression Enhancing Activity

Kazufumi Toume¹, Takafumi Nakazawa¹, Tahmina Hoque¹, Takashi Ohtsuki¹, Midori A. Arai¹, Takashi Koyano², Thaworn Kowithayakorn³, Masami Ishibashi¹

Affiliation

¹ Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan

² Temko Corporation, Tokyo, Japan

³ Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand

Correspondence

Prof Dr Masami Ishibashi

Graduate School of Pharmaceutical Sciences

Chiba University

1-33 Yayoi-cho, Inage-ku

Chiba 263-8522

Japan

Phone and Fax: +81/43/226/2923

mish@chiba-u.jp
List of Figures

Figure 1S \(^1\)H NMR spectrum of \(\mathbf{1}\) in CD\(_3\)OD. P. S3)
Figure 2S \(^{13}\)C NMR spectrum of \(\mathbf{1}\) in CD\(_3\)OD. P. S4)
Figure 3S \(^1\)H NMR spectrum of \(\mathbf{2}\) in CD\(_3\)OD. P. S5)
Figure 4S \(^{13}\)C NMR spectrum of \(\mathbf{2}\) in CD\(_3\)OD. P. S6)
Figure 5S \(^1\)H NMR spectrum of \(\mathbf{3}\) in CD\(_3\)OD. P. S7)
Figure 6S \(^{13}\)C NMR spectrum of \(\mathbf{3}\) in CD\(_3\)OD. P. S8)
Figure 7S \(^1\)H NMR spectrum of \(\mathbf{4}\) in CDCl\(_3\). P. S9)
Figure 8S \(^{13}\)C NMR spectrum of \(\mathbf{4}\) in CDCl\(_3\). P. S10)
Figure 9S \(^1\)H NMR spectrum of \(\mathbf{5}\) in CDCl\(_3\). P. S11)
Figure 10S \(^{13}\)C NMR spectrum of \(\mathbf{5}\) in CDCl\(_3\). P. S12)
Figure 11S \(^1\)H NMR spectrum of \(\mathbf{6}\) in CD\(_3\)OD. P. S13)
Figure 12S \(^{13}\)C NMR spectrum of \(\mathbf{6}\) in CD\(_3\)OD. P. S14)
Figure 13S \(^1\)H NMR spectrum of \(\mathbf{7}\) in CDCl\(_3\). P. S15)
Figure 14S \(^{13}\)C NMR spectrum of \(\mathbf{7}\) in CDCl\(_3\). P. S16)
Figure 15S \(^1\)H NMR spectrum of \(\mathbf{8}\) in CDCl\(_3\). P. S17)
Figure 16S \(^{13}\)C NMR spectrum of \(\mathbf{8}\) in CDCl\(_3\). P. S18)
Figure 17S CD spectrum of \(\mathbf{8}\) and \(\mathbf{9}\). P. S19)
Figure 1S 1H NMR spectrum of 1 in CD$_3$OD.
Figure 2S 13C NMR spectrum of 1 in CD$_3$OD.
Figure 3S 1H NMR spectrum of 2 in CD$_3$OD.
Figure 4S 1H NMR spectrum of 2 in CD$_3$OD.
Figure 5S 1H NMR spectrum of 3 in CD$_3$OD.
Figure 6S 13C NMR spectrum of 3 in CD$_3$OD.
Figure 7S 1H NMR spectrum of 4 in CDCl$_3$.
Figure 8S 13C NMR spectrum of 4 in CDCl$_3$.
Figure 9S 1H NMR spectrum of 5 in CDCl$_3$.
Figure 10S 13C NMR spectrum of 5 in CDCl$_3$.
Figure 11S 1H NMR spectrum of 6 in CD$_3$OD.
Figure 12S 13C NMR spectrum of 6 in CD$_3$OD.
Figure 13S 1H NMR spectrum of 7 in CDCl$_3$.

![H NMR spectrum of 7 in CDCl$_3$.](image)
Figure 14S 13C NMR spectrum of 7 in CDCl$_3$.
Figure 15S 1H NMR spectrum of 8 in CDCl$_3$.

![NMR Spectrum](image-url)
Figure 16S 1H NMR spectrum of 8 in CDCl$_3$.

[Image of NMR spectrum with molecular structure of 8]
Figure 17S CD spectrum of 8 and 9.

CD spectrum of 8 (MeOH): \(\lambda ([\theta]) \)

- 207 nm (-3600)
- 236 nm (+1800)
- 304 nm (+700)

CD spectrum of 9 (MeOH): \(\lambda ([\theta]) \)

- 209 nm (-4500)
- 238 nm (+1900)
- 304 nm (+700)