Supporting Information

Platycodin D inhibits lipogenesis through AMPKα-PPARγ2 in 3T3-L1 cells and modulates fat accumulation in obese mice
Eun Jeong Lee, Min Seok Kang, Yeong Shik Kim

Affiliation

Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Korea

Correspondence

Prof Dr Yeong Shik Kim
College of Pharmacy
Seoul National University
1 Gwanangno, Gwanak-gu
Seoul 151-742
Korea
Phone: +82/2/880/2479
Fax: +82/2/765/4768
kims@snu.ac.kr
Fig 1S The hypothetical mechanism mediated by platycodin D in adipogenesis.

C/EBP\(\beta\), C/EBP\(\gamma\), and sterol regulatory element-binding protein (SREBP)1C are well-known upstream regulators of PPAR\(\gamma2\) in the adipogenesis pathway; PD has no effect on such upstream regulators. However, PD treatment significantly reduces the amount of PPAR\(\gamma\) bound to PPRE (its target DNA sequence) and downregulate C/EBP\(\alpha\). Also, PD treatment improves adipogenesis by phosphorylation of AMPK and ACC, which are important factors for fatty acid oxidation.