Supporting Information

Triterpene Acids from *Euscaphis japonica* and Assessment of Their Cytotoxic and Anti-NO Activities

Li-Jie Zhang¹, Jing-Jy Cheng¹,², Chia-Ching Liao¹, Hui-Ling Cheng¹, Hung-Tse Huang¹, Li-Ming Yang Kuo¹, Yao-Haur Kuo¹,³

Affiliation

¹ National Research Institute of Chinese Medicine, Taipei, Taiwan, Republic of China
² Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan, Republic of China
³ Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan, Republic of China

Correspondence

Prof Dr Yao-Haur Kuo

National Research Institute of Chinese Medicine

Taipei 112

Taiwan

Republic of China

Phone: +886/2/28201999 ext. 7051

kuoyh@nricm.edu.tw
Fig. 1S 500 MHz 1H NMR spectrum of compound 1 in acetone-d_6.
Fig. 2S 125 MHz 13C NMR spectrum of compound 1 in acetone-d_6.
Fig. 3S 400 MHz 1H NMR spectrum of compound 2 in pyridine-d_5.
Fig. 4S 100 MHz 13C NMR spectrum of 2 in pyridine-d_5.
Fig. 5S 500 MHz 1H NMR spectrum of compound 3 in pyridine-d_5.
Fig. 6S 125 MHz 13C NMR spectrum of compound 3 in pyridine-d_5.
Fig. 7S 400 MHz 1H NMR spectrum of compound 4 in pyridine-d_5.
Fig. 8. 100 MHz 13C NMR spectrum of compound 4 in pyridine-d5.
Fig. 9S 500 MHz 1H NMR spectrum of compound 5 in acetone-d_6.
Fig. 10S 125 MHz 13C NMR spectrum of compound 5 in acetone-d_6.
Fig. 11S 500 MHz 1H NMR spectrum of compound 6 in pyridine-d_5.
Fig. 12S 125 MHz 13C NMR spectrum of compound 6 in pyridine-d_5.