Supporting Information

Triterpenoids and Steroids with Cytotoxic Activity from *Emmenopterys henryi*

Xing-De Wu¹, Juan He¹, Xing-Yao Li¹, Liao-Bin Dong¹, Xun Gong¹, Xiu Gao¹, Liu-Dong Song², Yan Li¹, Li-Yan Peng¹, Qin-Shi Zhao¹

Affiliations

¹State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, P. R. China

²School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, P. R. China

Correspondence

Prof. Qin-Shi Zhao

State Key Laboratory of Phytochemistry and Plant Resources in West China

132 Lanhei Road

Kunming 650201

P. R. China

Phone: +86 871 652 23058

Fax: +86871 652 15783
Contents of supporting information

<table>
<thead>
<tr>
<th>No.</th>
<th>Contents</th>
<th>page</th>
<th>No.</th>
<th>Contents</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Figure 1S. 1H NMR spectrum of compound 1</td>
<td>4</td>
<td>16</td>
<td>Figure 16S. HRESIMS spectrum of compound 2</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>Figure 2S. 13C NMR spectrum of compound 1</td>
<td>5</td>
<td>17</td>
<td>Figure 17S. UV spectrum of compound 2</td>
<td>20</td>
</tr>
</tbody>
</table>
Figure 1S. 1H NMR spectrum of compound 1
Figure 2S. 13C NMR spectrum of compound 1
Figure 3S. HSQC spectrum of compound 1
Figure 4S. 1H–1H COSY spectrum of compound 1
Figure 5S. HMBC spectrum of compound 1
Figure 6S. ROESY spectrum of compound 1
Figure 7S. HRESIMS spectrum of compound 1
Figure 8S. UV spectrum of compound 1
Figure 9S. IR spectrum of compound 1
Figure 10S. 1H NMR spectrum of compound 2
Figure 11S. 13C NMR spectrum of compound 2
Figure 12S. HSQC spectrum of compound 2
Figure 13S. 1H–1H COSY spectrum of compound 2
Figure 14S. HMBC spectrum of compound 2
Figure 15S. ROESY spectrum of compound 2
Figure 16S. HRESIMS spectrum of compound 2
Figure 17S. UV spectrum of compound 2
Figure 18S. IR spectrum of compound 2
Figure 19S. 1H NMR spectrum of compound 9
Figure 20S. 13C NMR spectrum of compound 9
Figure 21S. HSQC spectrum of compound 9
Figure 22S. 1H–1H COSY spectrum of compound 9
Figure 23S. HMBC spectrum of compound 9
Figure 24S. ROESY spectrum of compound 9
Figure 25S. HREIMS spectrum of compound 9

Elemental Composition Report

Single Mass Analysis (displaying only valid results)
Tolerance = 10.0 PPM / DBE: min = 0.5, max = 40.0
Selected filters: None

Monoisotopic Mass, Odd and Even Electron Ions
13 formula(e) evaluated with 1 results within limits (up to 51 closest results for each mass)
Elements Used:
C: 0-200 H: 0-400 O: 1-3
fwe-58a
10:56:31 01-Aug-2011
Voltage El+

%
0 329.900 330.000 330.100 330.200 330.300 330.400 330.500

Minimum:
Maximum:
Mass Calc. Mass mDa PPM DBE i-FIT Formula

Figure 26S. UV spectrum of compound 9
Figure 27S. IR spectrum of compound 9
Figure 28S. 1H NMR spectrum of compound 10
Figure 29S. 13C NMR spectrum of compound 10
Figure 30S. HSQC spectrum of compound 10
Figure 31S. \(^1\text{H}^1\text{H}\) COSY spectrum of compound 10
Figure 32S. HMBC spectrum of compound 10
Figure 33S. ROESY spectrum of compound 10
Figure 34S. HREIMS spectrum of compound 10

Elemental Composition Report

Single Mass Analysis (displaying only valid results)
Tolerance = 10.0 PPM / DBE: min = 0.5, max = 40.0
Selected filters: None

Monoisotopic Mass, Odd and Even Electron Ions
17 formula(e) evaluated with 1 results within limits (up to 51 closest results for each mass)
Elements Used:
 C: 0-200 H: 0-400 O: 1-4

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>i-PIT</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>328.2041</td>
<td>328.2038</td>
<td>0.3</td>
<td>0.9</td>
<td>8.0</td>
<td>5546800.5</td>
<td>C21 H28 O3</td>
</tr>
</tbody>
</table>

Minimum: 0.5
Maximum: 100.0 10.0 40.0

AutoSpec Premier
P776
1.58e3
Figure 35S. UV spectrum of compound 10
Figure 36S. IR spectrum of compound 10
Figure 37S. Structures of the known compounds.

3

4 \(R_1 \) \(R_2 \) \(R_3 \)
5 \(\text{OH} \) \(\text{OH} \) \(\text{OH} \)

6 \(R_1 \) \(R_2 \) \(R_3 \) \(R_4 \)
7 \(\text{OH} \) \(\text{OH} \) \(\text{OH} \) \(\text{H} \)
8

11 \(R_1 = \text{OH}, R_2 = \text{H} \)
12 \(R_1 + R_2 = \text{O} \)