Supporting Information

Neolignans from the Fruits of Magnolia obovata and Their Inhibition Effect on NO Production in LPS-Induced RAW 264.7 Cells

Kyeong-Hwa Seo¹, Dae-Young Lee², Dong-Sung Lee³, Ji-Hae Park¹, Rak-Hun Jeong¹, Ye-Jin Jung¹, Sabina Shrestha¹, In-Sik Chung¹, Geum-Soog Kim², Youn-Chul Kim³, Nam-In Baek¹

Affiliations
¹Graduate School of Biotechnology and Department of Oriental Medicinal Materials and Processing, Kyung Hee University, Yongin, Republic of Korea
²Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, Republic of Korea
³Standardized Material Bank for New Botanical Drugs, College of Pharmacy, Wonkwang University, Iksan, Republic of Korea

Correspondence

Prof. Nam-In Baek
Graduate School of Biotechnology and Department of Oriental Medicinal Materials and Processing
Kyung Hee University
1 Seocheon-dong, Giheung-gu
Yongin-si, Gyeonggi-do 446-701
Republic of Korea
Phone: +82 31 201 2661
Fax: +82 31 204 8116
eMail: nibaek@khu.ac.kr
Fig. 1S 1H-NMR spectrum of compound 6 (CDCl$_3$, 400 MHz).
Fig. 2S 13C-NMR spectrum of compound 6 (CDCl$_3$, 100 MHz).
Fig. 3S gHMBC spectrum of compound 6.
Fig. 4S HREIMS spectrum of compound 6.
Fig. 5S 1H-NMR spectrum of compound 7 (CDCl$_3$, 400 MHz).
Fig. 6S 13C-NMR spectrum of compound 7 (CDCl$_3$, 100 MHz).
Fig. 7S gHMBC spectrum of compound 7.
Fig. 8S HREIMS spectrum of compound 7.
Fig. 9S 1H-NMR spectrum of compound 9 (CDCl$_3$, 400 MHz).
Fig. 10S 13C-NMR spectrum of compound 9 (CDCl$_3$, 100 MHz).
Fig. 11S gHMBC spectrum of compound 9.
Fig. 12S HREIMS spectrum of compound 9.