Supporting Information

Amide Alkaloids from *Scopolia tangerica*

Zhen Long¹*, Yan Zhang²*, Zhimou Guo¹, Lien Wang³, Xingya Xue¹, Xiuli Zhang¹, Shisheng Wang³, Zhiwei Wang², Olivier Civelli²,
Xinmiao Liang¹

*These authors contributed equally to this work.

Affiliations

¹Key Laboratory of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People’s Republic of China

²Department of Pharmacology, University of California, Irvine, California, United States
Correspondence

Xinmiao Liang; Xiuli Zhang

Key Laboratory of Separation Science for Analytical Chemistry
Dalian Institute of Chemical Physics
Chinese Academy of Sciences
Dalian 116023
People’s Republic of China
liangxm@dicp.ac.cn; zhangxiuli@dicp.ac.cn
Table of Contents

General experimental procedures

Table 1S HMBC correlations of compound 1.
Table 2S HMBC correlations of compounds 2-4.

For compound 1:
Fig. 1S 1H NMR spectrum (600 MHz) of 1 in DMSO-d_6.
Fig. 2S 13C NMR spectrum (150 MHz) of 1 in DMSO-d_6.
Fig. 3S DEPT 135 spectrum of 1 in DMSO-d_6.
Fig. 4S HSQC spectrum of 1 in DMSO-d_6.
Fig. 5S HMBC spectrum of 1 in DMSO-d_6.
Fig. 6S 1H-1H COSY spectrum of 1 in DMSO-d_6.
Fig. 7S NOESY spectrum of 1 in DMSO-d_6.
Fig. 8S (+) HRESIMS spectrum of 1.

For compound 2:
Fig. 9S 1H NMR spectrum (600 MHz) of 2 in DMSO-d_6.
Fig. 10S 13C NMR spectrum (150 MHz) of 2 in DMSO-d_6.
Fig. 11S DEPT 135 spectrum of 2 in DMSO-d_6.
Fig. 12S HSQC spectrum of 2 in DMSO-d_6.
Fig. 13S HMBC spectrum of 2 in DMSO-d_6.
Fig. 14S 1H-1H COSY spectrum of 2 in DMSO-d_6.
Fig. 15S NOESY spectrum of 2 in DMSO-\textit{d}_6.
Fig. 16S (+) HRESIMS spectrum of 2.

For compound 3:
Fig. 17S 1H NMR spectrum (600 MHz) of 3 in DMSO-\textit{d}_6.
Fig. 18S 13C NMR spectrum (150 MHz) of 3 in DMSO-\textit{d}_6.
Fig. 19S DEPT 135 spectrum of 3 in DMSO-\textit{d}_6.
Fig. 20S HSQC spectrum of 3 in DMSO-\textit{d}_6.
Fig. 21S HMBC spectrum of 3 in DMSO-\textit{d}_6.
Fig. 22S 1H-1H COSY spectrum of 3 in DMSO-\textit{d}_6.
Fig. 23S NOESY spectrum of 3 in DMSO-\textit{d}_6.
Fig. 24S (+) HRESIMS spectrum of 3.

For compound 4:
Fig. 25S 1H NMR spectrum (600 MHz) of 4 in DMSO-\textit{d}_6.
Fig. 26S 13C NMR spectrum (150 MHz) of 4 in DMSO-\textit{d}_6.
Fig. 27S DEPT 135 spectrum of 4 in DMSO-\textit{d}_6.
Fig. 28S HSQC spectrum of 4 in DMSO-\textit{d}_6.
Fig. 29S HMBC spectrum of 4 in DMSO-\textit{d}_6.
Fig. 30S 1H-1H COSY spectrum of 4 in DMSO-\textit{d}_6.
Fig. 31S NOESY spectrum of 4 in DMSO-\textit{d}_6.
Fig. 32S (+) HRESIMS spectrum of 4.
General experimental procedures

The analytical chromatography system consisted of a 2695 HPLC pump and a 2489 photodiode array detector system. The chromatographic system for purification consisted of a 2525 binary gradient pump and a 2489 ultraviolet-visible detection system. Data were collected and analyzed using Empower software version 3.0 and Masslynx software version 4.1. All instruments and workstations were purchased from Waters. Melting points were recorded on an X-4 melting point apparatus (Tai Guang) without correction. IR spectra were recorded with a Perkin-Elmer GS-II FTIR spectrometer (Perkin-Elmer), and UV spectra were acquired using an SP-1901 UV (Guang Pu). Optical rotations were obtained with a Perkin-Elmer 241 polarimeter. All NMR spectra were recorded on a Bruker FT-NMR Ultra Shield TM 600 MHz spectrometer with TMS (tetramethylsilane) as the internal standard. HRESIMS were obtained using an orbitrap LTQ-Orbitrap mass spectrometer (Thermo). Strong cation exchange (SCX) solid phase extraction (SPE) (20 g, 60 mL, 60 µm) cartridges, XCharge C18 (50 x 260 mm, 10 µm), XCharge C18 (20 x 250 mm, 10 µm), C8PN (10 x 150 mm, 5 µm), C8PN (20 x 250 mm, 10 µm) and XCharge SCX (20 x 250 mm, 10 µm) columns were purchased from Accorm Ltd. Co. Ca^{2+} responses were monitored by a fluorometric imaging plate reader assay (FLIPR).

The alkaloid-enriched fraction was separated by XCharge C18 column, and 15 fractions (Fr. 1 – Fr. 15) were obtained. Details are described in Fig. aS. Fr. 6 and Fr. 9 was purified by C8 PN. Compounds 9 (201.1 mg) and 10 (161.1 mg) were obtained from Fr. 6. Details are described in
Fig. bS. Compound 6 (198.4 mg) and 7 (49.6 mg) were obtained from Fr. 9. Details are described in **Fig. cS.** Fr. 11 and Fr. 14 were further separated by XCharge SCX. Details are described in **Figs. dS and eS.** Compounds 2 (50.1 mg), 3 (9.2 mg), 5 (571.5 mg), and 8 (553.2 mg) were obtained from Fr. 11. Six subfractions (Fr. 14A–Fr. 14G) from Fr. 14 were obtained. Fr. 14C and Fr. 14E were further purified by XCharge C18. Compound 11 (7.4 mg) was acquired from the subfraction Fr. 14C. Details are described in **Fig. fS.** Compounds 1 (8.3 mg) and 4 (313.3 mg) were acquired from the subfraction Fr. 14E. Details are described in **Fig. gS.** All compounds were desalted by C18 SPE and eluted with FA/methanol (5/1000, v/v). Compounds 1-11 are all formates.
The chromatogram for the alkaloid enriched fraction was obtained on XCharge C18 (50 x 250 mm, 10 μm). The mobile phases were A: ACN, B: 200 mM Na₂SO₄ (pH was adjusted to 2.3 by H₃PO₄ and ethanolamine), C: H₂O. Mobile phase concentrations were started at 5% A, 10% B and shifted to 15% A, 10% B over 30 min. The flow rate was 80.0 mL/min, and peaks were recorded at 210 nm.
Fig. bS Chromatogram for Fr. 6 was obtained on C8PN (10 × 150 mm, 5 μm). The mobile phases were A: ACN, B: 100 mM NaClO₄, C: 100 mM NaH₂PO₄ (pH was adjusted to 2.8 by 85% H₃PO₄), D: H₂O. Mobile phase concentrations were started at 5% A, 10% B, 5% C and shifted to 15% A, 10% B, 5% C, over 30 min. The flow rate was 3.0 mL/min, and peaks were recorded at 210 nm.

Fig. cS Chromatogram for Fr. 9 was obtained on C8PN (10 × 150 mm, 5 μm). The mobile phases were A: ACN, B: 100 mM NaClO₄, C: 100 mM NaH₂PO₄ (pH was adjusted to 2.8 by 85% H₃PO₄), D: H₂O. Mobile phase concentrations were started at 5% A, 10% B, 5% C and shifted to 15% A, 10% B, 5% C, over 30 min. The flow rate was 3.0 mL/min, and peaks were recorded at 210 nm.
Fig. dS Chromatogram for Fr. 11 was obtained on XCharge SCX (20 x 250 mm, 10 μm). The mobile phases were A: ACN, B: 100 mM NaH₂PO₄ (pH was adjusted to 2.8 by 85% H₃PO₄), C: H₂O. Mobile phase concentrations were started at 30% A, 30% B and shifted to 50% A, 30% B over 30 min. The flow rate was 20.0 mL/min, and peaks were recorded at 210 nm.
Chromatogram for Fr. 11 was obtained on XCharge SCX (20 x 250 mm, 10 μm). The mobile phases were A: ACN, B: 100 mM NaH₂PO₄ (pH was adjusted to 2.8 by 85% H₃PO₄), C: H₂O. Mobile phase concentrations were started at 30% A, 30% B and shifted to 50% A, 30%B over 30 min. The flow rate was 20.0 mL/min, and peaks were recorded at 210 nm.
Chromatogram for Fr. 14C was obtained on XCharge C18 (20 x 250 mm, 10 μm). The mobile phases were A: ACN, B: 0.1% FA. Mobile phase concentration was 7% A. The flow rate was 20.0 mL/min, and peaks were recorded at 210 nm.
Fig. gS Chromatogram for Fr. 14E was obtained on XCharge C18 (20 x 250 mm, 10 μm). The mobile phases were A: ACN, B: 0.1% FA. Mobile phase concentration was 7% A. The flow rate was 20.0 mL/min, and peaks were recorded at 210 nm.
<table>
<thead>
<tr>
<th>Position</th>
<th>HMBC correlations</th>
<th>Position</th>
<th>HMBC correlations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/5</td>
<td>C-7, C-8</td>
<td>12</td>
<td>C-10, C-11, C-14</td>
</tr>
<tr>
<td>2/4</td>
<td>C-7, C-8, C-3, C-1, C-5</td>
<td>15</td>
<td>C-14, C-17</td>
</tr>
<tr>
<td>7/8</td>
<td>C-2, C-4, C-1, C-5</td>
<td>16</td>
<td>C-14, C-17, C-18, C-22</td>
</tr>
<tr>
<td>9</td>
<td>C-1, C-5, C-10, C-11</td>
<td>18</td>
<td>C-22, C-16, C-20</td>
</tr>
<tr>
<td>10</td>
<td>C-9, C-11, C-12</td>
<td>21</td>
<td>C-17, C-19</td>
</tr>
<tr>
<td>11</td>
<td>C-9</td>
<td>22</td>
<td>C-18, C-16, C-20</td>
</tr>
<tr>
<td>Position</td>
<td>HMBC correlations 2</td>
<td>HMBC correlations 3</td>
<td>HMBC correlations 4</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>3</td>
<td>C-1, C-5, C-7</td>
<td>C-1, C-5, C-7</td>
<td>C-1, C-5, C-8</td>
</tr>
<tr>
<td>5</td>
<td>C-1, C-3, C-7</td>
<td>C-1, C-3, C-7</td>
<td>C-1, C-3, C-8</td>
</tr>
<tr>
<td>6</td>
<td>C-2, C-4</td>
<td>C-2, C-4</td>
<td>C-2, C-4</td>
</tr>
<tr>
<td>7</td>
<td>C-3, C-5, C-7-OCH₃, C-8</td>
<td>C-3, C-4, C-5, C-8, C-9</td>
<td>C-4, C-6, C-9</td>
</tr>
<tr>
<td>8a</td>
<td>C-4, C-7, C-9</td>
<td>C-4, C-7, C-9</td>
<td>C-3, C-4, C-5, C-9</td>
</tr>
<tr>
<td>8b</td>
<td>C-4, C-7-OCH₃</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>C-9, C-13</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>C-11, C-13</td>
<td>C-11, C-13</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>C-12</td>
<td>C-12</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>C-18</td>
<td>C-16, C-18</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>C-20</td>
<td>C-16, C-20</td>
<td>C-20</td>
</tr>
<tr>
<td>21</td>
<td>C-20, C-22</td>
<td>C-20, C-22, C-23</td>
<td>C-20, C-22, C-23</td>
</tr>
<tr>
<td>22</td>
<td>C-20, C-21, C-23, C-28</td>
<td>C-20, C-21, C-23, C-24, C-28</td>
<td>C-20, C-21, C-23, C-24</td>
</tr>
<tr>
<td>24</td>
<td>C-22, C-26, C-28</td>
<td>C-22, C-26, C-28</td>
<td>C-22, C-26, C-28</td>
</tr>
<tr>
<td>27</td>
<td>C-23, C-25</td>
<td>C-23, C-25</td>
<td>C-23, C-25</td>
</tr>
<tr>
<td>28</td>
<td>C-22, C-24, C-26</td>
<td>C-22, C-24, C-26</td>
<td>C-22, C-24, C-26</td>
</tr>
<tr>
<td>2-OCH₃</td>
<td>-</td>
<td>C-2</td>
<td>-</td>
</tr>
<tr>
<td>25-OCH₃</td>
<td>-</td>
<td>C-25</td>
<td>-</td>
</tr>
<tr>
<td>7-OCH₃</td>
<td>C-7</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Fig. 1S 1H NMR spectrum (600 MHz) of 1 in DMSO-d_6.
Fig. 2S 13C NMR spectrum (150 MHz) of 1 in DMSO-d_6.
Fig. 3S DEPT 135 spectrum of 1 in DMSO-d_6.
Fig. 4S HSQC spectrum of 1 in DMSO-d_6.
Fig. 5S HMBC spectrum of 1 in DMSO-d_6.
Fig. 6S 1H-1H COSY spectrum of 1 in DMSO-d_6.
Fig. 7S NOESY spectrum of 1 in DMSO-d_6.
Fig. 8S (+) HRESIMS spectrum of 1.
Fig. 9S 1H NMR spectrum (600 MHz) of 2 in DMSO-d_6.

Fig. 10S 13C NMR spectrum (150 MHz) of 2 in DMSO-d_6.

Carbon signal of formic acid
Fig. 11S DEPT 135 spectrum of 2 in DMSO-d_6.
Fig. 12S HSQC spectrum of 2 in DMSO-d_6.
Fig. 13S HMBC spectrum of 2 in DMSO-$_d_6$.

HMBC correlations of formic acid
Fig. 14S 1H-1H COSY spectrum of 2 in DMSO-d_6.
Fig. 15S NOESY spectrum of 2 in DMSO-d_6.

Fig. 16s (+) HRESIMS spectrum of 2.
Fig. 17S 1H NMR spectrum (600 MHz) of 3 in DMSO-d_6.

(proton signal of formic acid)
Fig. 18 13C NMR spectrum (150 MHz) of 3 in DMSO-d_6.
Fig. 19S DEPT 135 spectrum of 3 in DMSO-d_6.
Fig. 20S HSQC spectrum of 3 in DMSO-d_6.
Fig. 21S HMBC spectrum of 3 in DMSO-\textit{d}_6.
Fig. 22S 1H-1H COSY spectrum of 3 in DMSO-d_6.

Fig. 23S NOESY spectrum of 3 in DMSO-d_6.

Fig. 24S (+) HRESIMS spectrum of 3.
Fig. 25S 1H NMR spectrum (600 MHz) of 4 in DMSO-d_6.
Fig. 26 13C NMR spectrum (150 MHz) of 4 in DMSO-d_6.

Fig. 27S DEPT 135 spectrum of 4 in DMSO-d_6.
Fig. 28S HSQC spectrum of 4 in DMSO-d_6.
Fig. 29S HMBC spectrum of 4 in DMSO-d_6.

HMBC correlations of formic acid
Fig. 30S 1H-1H COSY spectrum of 4 in DMSO-d_6.
Fig. 31S NOESY spectrum of 4 in DMSO-d_6.
Fig. 32S (+) HRESIMS spectrum of 4.