Supporting Information

Trans-Resveratrol Induces Apoptosis through ROS-Triggered Mitochondria-Dependent Pathways in A549 Human Lung Adenocarcinoma Epithelial Cells

Ina Katharina Lucas, Herbert Kolodziej

Affiliation

Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical Biology, Berlin, Germany

Correspondence

Prof. Dr. Herbert Kolodziej

Freie Universität Berlin

Institute of Pharmacy, Pharmaceutical Biology

KöniginLuise-Str. 2+4

14195 Berlin

Germany

Phone: +49-30-838-53731

Fax: +49-30-838-53729

kolpharm@zedat.fu-berlin.de
Fig. 1S Detection of apoptotic events by resveratrol in A549 cells (annexin V stain; 24 h treatment). (A) Vehicle control (DMSO, 0.2%), (B) camptothecin (50 µM), (C) resveratrol 15 µg/mL (65.5 µM), and (D) resveratrol 30 µg/mL (131.4 µM); scale bar = 50 µm.

Fig. 2S Detection of ROS induced by resveratrol in A549 cells using H$_2$DCF-DA. (A) Vehicle control (DMSO, 0.2%), (B) camptothecin (100 µM), (C) staurosporin (1 µm), and (D) resveratrol 15 µg/mL (65.5 µM); scale bar = 50 µm.
Fig. 3S Detection of ROS induced by resveratrol in A549 cells pretreated with rotenone (H$_2$DCF-DA treatment).

Vehicle (DMSO 0.2%)

Rotenone (10 µM)

Resveratrol 15 µg/mL (65.7 µM)

Resveratrol 30 µg/mL (131.4 µM)

Rotenone (10 µM) + Resveratrol 65.7 µM

Rotenone (10 µM) + Resveratrol 131.4 µM

Fig. 4S Detection of apoptotic events by resveratrol in A549 cells pretreated with rotenone (annexin V stain)

Vehicle (DMSO 0.2%)

Rotenone (10 µM)

Resveratrol 15 µg/mL (65.7 µM)

Resveratrol 30 µg/mL (131.4 µM)

Rotenone (10 µM) + Resveratrol 65.7 µM

Rotenone (10 µM) + Resveratrol 131.4 µM