Supporting Information

Influence of Processing on the Content of Toxic Carboxyatractyloside and Atractyloside and the Microbiological Status of Xanthium sibiricum Fruits (Cang’erzi)

Stefanie Nikles¹, Heidi Heuberger², Eberhard Hilsdorf³, Robert Schmücker⁴, Rebecca Seidenberger², Rudolf Bauer¹

Affiliations

¹Institute of Pharmaceutical Sciences, Department of Pharmacognosy, Karl-Franzens-University Graz, Graz, Austria
²Bavarian State Research Center for Agriculture (LfL), Institute of Crop Science and Plant Breeding, Freising, Germany
³HerbaSinica Hilsdorf GmbH, Rednitzhembach, Germany
⁴PhytoLab GmbH & Co. KG, Vestenbergsgreuth, Germany

Correspondence

Prof. Dr. Rudolf Bauer
Institute of Pharmaceutical Sciences
Department of Pharmacognosy
Karl-Franzens University Graz
Universitätsplatz 4/I
8010 Graz
Austria
Phone: +43 316 380 8700
Fax: +43 316 380 9860
rudolf.bauer@uni-graz.at
Fig. 1S Full a MS, b MS², c MS³, and d UV spectra of CATR in the negative ESI mode.

Fig. 2S Full a MS, b MS², and c UV spectra of ATR in the negative ESI mode.
Fig. 3S Influence of using a drying oven and different temperatures on the content of CATR and ATR; error bars: standard deviation; N = 4.

Fig. 4S Influence of different roasting methods on the content of CATR and ATR; BS = baking sheet in the oven; CP = Chinese pharmacopoeia; error bars: standard deviation; N = 2.
Fig. 5S Investigation of trade samples and import samples on their content of CATR and ATR (Table 4); error bars: standard deviation; N = 2.

Fig. 6S Thin-layer chromatogram of Fructus Xanthii samples with a a high content of CATR (a) and b a high content of ATR.