Supporting Information

Diterpenoids from the Whole Plant of *Lagochilus platyacanthus*

Cheng-Gang Zhang1, 2*, Lu Wang3*, Ye Lu1, 2, Zi Ye1, 2, Zhu-Zhen Han1, 2, Hong Xu1, 2, Gui-Xin Chou1, 2

*These authors contributed equally to this work.

Affiliations

1The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
2Shanghai R&D Center for Standardization of Chinese Medicines, Shanghai, China
3Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai, China

Correspondence

Prof. Hong Xu
Institute of Chinese Materia Medica
Shanghai University of Traditional Chinese Medicine
1200 Cailun Road
Shanghai 201203
China
Phone: + 86 21 51 32 25 06
Fax: + 86 21 51 32 25 19
xuhongtcm@hotmail.com

Dr. Zhu-Zhen Han
Institute of Chinese Materia Medica
Shanghai University of Traditional Chinese Medicine
Fig. 1S 1H-NMR spectrum of compound 1 (CDCl$_3$, 600 MHz).

Fig. 2S 13C-NMR and DEPT spectra of compound 1 (CDCl$_3$, 150 MHz).
Fig. 3S HSQC NMR spectrum of compound 1 (CDCl$_3$, 600 MHz).

Fig. 4S HMBC NMR spectrum of compound 1 (CDCl$_3$, 600 MHz).
Fig. 5S 1H-1H COSY NMR spectrum of compound 1 (CDCl$_3$, 600 MHz).

Fig. 6S NOESY spectrum of compound 1 (CDCl$_3$, 600 MHz).
Fig. 7S 1H-NMR spectrum of compound 2 (CDCl$_3$, 600 MHz).

Fig. 8S 13C-NMR and DEPT spectra of compound 2 (CDCl$_3$, 150 MHz).
Fig. 9S HSQC NMR spectrum of compound 2 (CDCl₃, 600 MHz).

Fig. 10S HMBC NMR spectrum of compound 2 (CDCl₃, 600 MHz).
Fig. 11S 1H-1H COSY NMR spectrum of compound 2 (CDCl$_3$, 600 MHz).

Fig. 12S NOESY spectrum of compound 2 (CDCl$_3$, 600 MHz).
Fig. 13S 1H-NMR spectrum of compound 3 (CD$_3$OD, 600 MHz).

Fig. 14S 13C-NMR and DEPT spectra of compound 3 (CD$_3$OD, 150 MHz).
Fig. 15S HSQC NMR spectrum of compound 3 (CD$_3$OD, 600 MHz).

Fig. 16S HMBC NMR spectrum of compound 3 (CD$_3$OD, 600 MHz).
Fig. 17S 1H-1H COSY NMR spectrum of compound 3 (CD$_3$OD, 600 MHz).

Fig. 18S NOESY spectrum of compound 3 (CD$_3$OD, 600 MHz).
Fig. 19S 1H-NMR spectrum of compound 5 (CDCl$_3$, 600 MHz).

Fig. 20S 13C-NMR and DEPT spectra of compound 5 (CDCl$_3$, 150 MHz).
Fig. 21S HSQC NMR spectrum of compound 5 (CDCl₃, 600 MHz).

Fig. 22S HMBC NMR spectrum of compound 5 (CDCl₃, 600 MHz).
Fig. 23S 1H-1H COSY NMR spectrum of compound 5 (CDCl$_3$, 600 MHz).

Fig. 24S NOESY spectrum of compound 5 (CDCl$_3$, 600 MHz).
Fig. 25S 1H-NMR spectrum of compound 6 (CDCl$_3$, 600 MHz).

Fig. 26S 13C-NMR and DEPT spectra of compound 6 (CDCl$_3$, 150 MHz).
Fig. 27S HSQC NMR spectrum of compound 6 (CDCl₃, 600 MHz).
Fig. 28S HMBC NMR spectrum of compound 6 (CDCl₃, 600 MHz).

Fig. 29S ¹H-¹H COSY NMR spectrum of compound 6 (CDCl₃, 600 MHz).

Fig. 30S NOESY spectrum of compound 6 (CDCl₃, 600 MHz).
Fig. 31S HRESIMS spectrum of compound 1.

Fig. 32S IR spectrum of compound 1.
Fig. 33S HRESIMS spectrum of compound 2.

Fig. 34S IR spectrum of compound 2.
Fig. 35S HRESIMS spectrum of compound 3.
Fig. 36S IR spectrum of compound 3.

Fig. 37S HRESIMS spectrum of compound 5.

Fig. 38S IR spectrum of compound 5.
Fig. 39S HRESIMS spectrum of compound 6.
Fig. 40S IR spectrum of compound 6.

Fig. 41S Key HMBC, 1H–1H COSY and NOESY correlations of 3.