Supporting Information

Employment of High-Performance Thin-Layer Chromatography for the Quantification of Oleuropein in Olive Leaves and the Selection of a Suitable Solvent System for Its Isolation with Centrifugal Partition Chromatography

Vasiliki-Ioanna Boka¹, Aikaterini Argyropoulou¹, Evangelos Gikas², Apostolis Angelis¹, Nektarios Aligiannis¹, Alexios-Leandros Skalsounis¹

Affiliations

¹Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, Athens, Greece
²Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, Athens, Greece

Correspondence

Nektarios Aligiannis
Department of Pharmacognosy and Natural Products Chemistry
Faculty of Pharmacy
University of Athens
Panepistimiopolis Zografou
15771, Athens
Greece
Phone: +30 2107274757
Fax: +30 2107274594
aligiannis@pharm.uoa.gr
Fig. 1S 1H-NMR spectra of oleuropein.

Oleuropein: 1H-NMR (600 MHz, CD$_3$OD): δ 5.93 (d, $J = 1.3$ Hz, H-1), 7.53 (s, H-3), 3.97 (dd, $J = 9.0$ and 4.6 Hz, H-5), 2.70 (dd, $J = 14.0$ and 4.6 Hz, H-6a), 2.44 (dd, $J = 14.0$ and 9.0 Hz, H-6b), 6.10 (q, $J = 7.2$ Hz, H-8), 1.68 (dd, $J = 7.2$ and 1.3 Hz, H-10), 3.73 (3H, s, OMe), 4.80 (d, $J = 8.0$ Hz, H-1’), 3.43-3.30 (4H, H-2”-H-5”), 3.67 (dd, $J = 12.0$ and 5.6 Hz, H-6b”), 3.89 (dd, $J = 12.0$ and 1.6 Hz, H-6a”), 4.20 (dt, $J = 10.8$ and 7.0 Hz, H-7a’), 4.11 (dt, $J = 10.8$ and 7.0 Hz, H-7b’), 2.77 (2H, t, $J = 7$ Hz, H-8”), 6.66 (d, $J = 2.0$ Hz, H-2’), 6.69 (d, $J = 8.0$ Hz, H-5”), 6.55 (dd, $J = 8.0$ and 2.0 Hz, H-6”).