Supporting Information

Vitamin D Receptor-Mediated Upregulation of CYP3A4 and MDR1 by Quercetin in Caco-2 cells

Yoon-Jee Chae1*, Kwan Hyung Cho2*, In-Soo Yoon3, Chi-Kyoung Noh4, Hyo-Jong Lee2, Yohan Park2, Eunhee Ji5, Min-Duk Seo6,7, Han-Joo Maeng5

Affiliations

1Chong Kun Dang Research Institute, CKD Pharmaceuticals Inc., Jung-dong, Giheung, Yongin, Gyeonggi, Republic of Korea
2College of Pharmacy, Inje University, Obang-dong, Gimhae, Gyeongnam, Republic of Korea
3College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Mokpo, Republic of Korea
4College of Pharmacy, Seoul National University, Seoul, Republic of Korea
5College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, Republic of Korea
6College of Pharmacy, Ajou University, Suwon, Kyeonggi, Republic of Korea
7Department of Molecular Science and Technology, Ajou University, Suwon, Kyeonggi, Republic of Korea

*These authors contributed equally to this work.
Correspondence

Dr. Han-Joo Maeng

College of Pharmacy, Gachon University
191 Hambakmoeiro
Yeonsu-gu, Incheon 406-799
Republic of Korea
Phone: +82 32 899 6580
Fax: +82 32 899 6118
hjmaeng@gachon.ac.kr

Dr. Min-Duk Seo

Department of Molecular Science and Technology & College of Pharmacy, Ajou University
206 World cup-ro
Suwon, Gyeonggi 443-749
Republic of Korea
Phone: +82 31 219 3450
Fax: +82 31 219 3435
mdseo@ajou.ac.kr
Fig. 1S Effects of quercetin or 1,25(OH)$_2$D$_3$ on CYP3A4, and MDR1 protein levels in Caco-2 cells transfected with pCMV-VDR. GAPDH was used as an internal control.