Supporting Information

New ent-Clerodane and Abietane Diterpenoids from the Roots of Kenyan

Croton megalocarpoides Friis & M.G. Gilbert

Beth Nduna¹,², Moses K. Langat²,³, Dulcie A. Mulholland²,³, Harry Eastman², Melissa R. Jacob⁴, Shabana I. Khan⁴,⁵, Larry A. Walker⁴,⁵, Ilias Muhammad⁴, Leonidah O. Kerubo¹, Jacob O. Midiwo¹

Affiliations

¹Department of Chemistry, Nairobi University, Nairobi, Kenya
²Department of Chemistry, University of Surrey, Guildford, Surrey, United Kingdom
³School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
⁴National Centre for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, MS, USA
⁵Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, MS, USA

Correspondence

Prof. Jacob O Midiwo
Department of Chemistry
Nairobi University
Private Bag 30197-00100
Nairobi
Kenya
Phone: +254 722 776 682
jmidiwo@uonbi.ac.ke

*Dedicated to Professor Dr. Dr. h.c. mult. Kurt Hostettmann in recognition of his outstanding contribution to natural product research
Fig. 1S Selected correlations in the NOESY spectrum for compound 1.

![Compound 1](image1)

Fig. 2S Selected correlations in the NOESY spectrum for compound 2.

![Compound 2](image2)
Fig. 3S 1H NMR spectrum for compound 1.
Fig. 4S 13C NMR spectrum for compound 1.
Fig. 5S COSY spectrum for compound 1.
Fig. 6S HMBC spectrum for compound 1.
Fig. 7S NOESY spectrum for compound 1.
Fig. 8S CD spectrum for compound 1.
Fig. 9S IR spectrum for compound 1.
Fig. 10S ESIMS spectrum for compound 1.

Measured Spectrum

Theoretical Spectrum

<table>
<thead>
<tr>
<th>m/z</th>
<th>Formula</th>
<th>PDB</th>
<th>Delta ppm</th>
<th>Theo. Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>359.18670</td>
<td>C_{21}H_{27}O_{4}</td>
<td>8.5</td>
<td>0.86</td>
<td>359.18640</td>
</tr>
</tbody>
</table>
Fig. 11S 1H NMR spectrum for compound 2.
Fig. 12S 13C NMR spectrum for compound 2.
Fig. 13S CD spectrum for compound 2.
Fig. 14S ESIMS spectrum for compound 2.
Fig. 15S 1H NMR spectrum for compound 3.
Fig. 16S 13C NMR spectrum for compound 3.
Fig. 17S ESI MS spectrum for compound 3.
Fig. 18 1H NMR spectrum for compound 4.
Fig. 19S 13C NMR spectrum for compound 4.
Fig. 20S ESI MS spectrum for compound 4.
Fig. 211H NMR spectrum for compound 4a.
Fig. 22S 13C NMR spectrum for compound 4a.
Fig. 23 1H NMR spectrum for compound 5.
Fig. 24S 13C NMR spectrum for compound 5.
Fig. 25S ESI MS spectrum for compound 5.
Fig. 26S 1H NMR spectrum for compound 6.
Fig. 27S 13C NMR spectrum for compound 6.
Fig. 28S ESI MS spectrum for compound 6.
Fig. 29S 1H NMR spectrum for compound 7.
Fig. 30S 13C NMR spectrum for compound 7.
Fig. 31S ESI MS spectrum for compound 7.
Fig. 32S 1H NMR spectrum for compound 8.
Fig. 33S 13C NMR spectrum for compound 8.
Fig. 34S ESI MS spectrum for compound 8.

Measured Spectrum

Theoretical Spectrum

<table>
<thead>
<tr>
<th>m/z</th>
<th>Formula</th>
<th>KOB</th>
<th>Delta ppm</th>
<th>Theo. Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>423.14139</td>
<td>C_{22}H_{24}O_{14}Na</td>
<td>10.3</td>
<td>-0.09</td>
<td>428.14142</td>
</tr>
</tbody>
</table>
Fig. 35S 1H NMR spectrum for compound 9.
Fig. 36S 13C NMR spectrum for compound 9.
Fig. 37S ESI MS spectrum for compound 9.
Fig. 38S 1H NMR spectrum for compound 10.
Fig. 39S 13C NMR spectrum for compound 10.
Fig. 40S ESI MS spectrum for compound 10.
Fig. 41S 1H NMR spectrum for compound 11.
Fig. 42S 13C NMR spectrum for compound 11.
Fig. 43S ESI MS spectrum for compound 11.
Fig. 44S 1H NMR spectrum for compound 12.
Fig. 45S 13C NMR spectrum for compound 12.
Fig. 46S ESI MS spectrum for compound 12.
Fig. 47S 1H NMR spectrum for compound 13.
Fig. 48S 13C NMR spectrum for compound 13.
Fig. 49S ESIMS spectrum for compound 13.