Supporting Information

Phenylpyruvic Acid-2-\textit{O-}\textbeta-D-Glucoside Attenuates High Glucose-Induced Apoptosis in H9c2 Cardiomyocytes

Phiwayinkosi Vusi Dludla1,2, Christo John Frederick Muller1, Elizabeth Joubert3,4, Johan Louw1, Kwazi Bethuel Gabuza1, Barbara Huisamen1,2, M. Faadiel Essop5, Rabia Johnson1

Affiliations

1Biomedical Research and Innovation Platform (BRIP), Medical Research Council (MRC), Tygerberg, South Africa
2Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
3Post-Harvest and Wine Technology Division, Agricultural Research Council (ARC) Infruitec- Nietvoorbij, Stellenbosch, South Africa
4Department of Food Science, Stellenbosch University, Stellenbosch, South Africa
5Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
Correspondence

Rabia Johnson

Biomedical Research and Innovation Platform (BRIP)
Medical Research Council
P.O. Box 19070
Tygerberg 7505
South Africa
Phone: +27 219380866
Fax: +27 219380456
rabia.johnson@mrc.ac.za
Figure S1 Effect of PPAG, metformin (MET) and MET + PPAG on formation of reactive oxygen species (ROS). Dichlorofluorescein diacetate (DCF-DA) fluorescent stain was used to detect the generation of ROS in H9c2 cells. Although PPAG was able to reduce enhanced ROS generation, treatment with MET or MET + PPAG performed better in ameliorating ROS production after high glucose (HG) exposure. Mannitol (MAN) did not have an effect on ROS and was comparable to the normal glucose (NG) control. Results are the mean ± SEM of 3 independent biological experiments relative to the NG control, each done in triplicate. *p < 0.05, **p < 0.001, ***p < 0.0001 versus NG; #p < 0.05, ##p < 0.001, ###p < 0.0001 versus HG.
Figure S2 Effect of PPAG, metformin (MET) and MET + PPAG on the glutathione (GSH) content. CellTracker Blue CMAC fluorescent stain was used to detect the amount of GSH in H9c2 cells. Although PPAG failed to have an effect on GSH, treatment with MET or MET + PPAG was able to improve GSH content after high glucose (HG) exposure. Mannitol (MAN) did not have an effect on GSH content and was comparable to the normal glucose (NG) control. Results are the mean ± SEM of 3 independent biological experiments relative to the NG control, each done in triplicate. **p < 0.001, ***p < 0.0001 versus NG; ### p < 0.0001 versus HG.
Figure S3 Effect of PPAG, metformin (MET) and MET + PPAG on superoxide dismutase (SOD) activity. Mannitol (MAN) did not have an effect on SOD activity and was comparable to the normal glucose (NG) control. Although PPAG failed to have an effect on SOD activity, treatment with MET or MET + PPAG was able to improve SOD activity after high glucose (HG) exposure. Results are the mean ± SEM of 3 independent biological experiments relative to the NG control, each done in triplicate. *p < 0.05, **p < 0.001, ***p < 0.0001 versus NG; ##p < 0.001, ###p < 0.0001 versus HG.