Supporting Information

Astagalus Polysaccharide Attenuates Murine Colitis through Inhibition of the NLRP3 Inflammasome

Zhiqiang Tian¹*, Yao Liu², BoYang², Ji Zhang¹, Haiyang He¹, Hui Ge³, Yuzhang Wu¹, Zigang Shen¹*

Affiliations

¹ Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
² Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing, China
³ Weifang Municipal Center for Disease Control and Prevention, Weifang, Shandong, China

*These authors contributed equally to this manuscript.

Correspondence

Zigang Shen
Institute of Immunology
PLA
Third Military Medical University
30 Gaotanyan Street
Shapingba District
Chongqing 400038
China
Phone: +86 23 6877 1963
Fax: +8623 68752789
shenzigang111@126.com

Yuzhang Wu
Institute of Immunology
PLA
Third Military Medical University
30 Gaotanyan Street
Shapingba District
Chongqing 400038
China
Phone: +86 23 6877 1963
Fax: +8623 68752789
wuyuzhang2006@sohu.com
Fig. S1 APS effects on DSS-induced colitis changes in the protein expression of NLRP3, ASC, and caspase-1 in the other two samples of each group of mice. Animals in the normal group (Normal control): saline vehicle with no DSS during induction and saline injection during treatment; DSS colitis control group: only saline vehicle treatment (DSS + saline); APS low-dose treatment group: APS 100 mg/kg (DSS + L-APS); APS mid-dose treatment group: APS 200 mg/kg (DSS + M-APS); APS high-dose treatment group: APS 500 mg/kg (DSS + H-APS); SASP treatment group: received SASP 1000 mg/kg (DSS + SASP). NC: Normal control; sal: DSS + saline; SASP: DSS + SASP; L: DSS + L-APS; M: DSS + M-APS; H: DSS + H-APS.