Supporting Information

α-Tetralonyl Glucosides from the Green Walnut Husks of Juglans mandshurica and Their Antiproliferative Effects

An-dong Wang1,3, Chao-jie Xie1,3, Yun-qiang Zhang1,3, Mei-chen Li1,3, Xia Wang1,3, Jian-yu Liu2,3, Yong-nan Xu2,3

Affiliations

1School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, People’s Republic of China

2School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, People’s Republic of China

3Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, People’s Republic of China

Correspondence

Dr. Jian-yu Liu

School of Pharmaceutical Engineering

Shenyang Pharmaceutical University
Liaoning
People’s Republic of China
Phone: +86 15 998 827 142
burningice@126.com

Prof. Yong-nan Xu
School of Pharmaceutical Engineering
Shenyang Pharmaceutical University
Liaoning
People’s Republic of China
Phone: +86 13 342 452 898
ynxu@syphu.edu.cn

Experimental Section

Fig. 1S HR-ESI-TOF MS spectrum of compound 1
Fig. 2S CD spectrum of compound 1
Fig. 3S \(^1\)H NMR (methanol-\(d_4\), 600 MHz) spectrum of compound 1
Fig. 4S \(^{13}\)C NMR (methanol-\(d_4\), 100 MHz) spectrum of compound 1
Fig. 5S HSQC spectrum of compound 1
Fig. 6S HMBC spectrum of compound 1
Fig. 7S NOESY spectrum of compound 1
Fig. 8S \(^1\)H-\(^1\)H COSY spectrum of compound 1
Fig. 9S HR-ESI-TOF MS spectrum of compound 2
Fig. 10S CD spectrum of compound 2
Fig. 11S 1H NMR (methanol-d_4, 600 MHz) spectrum of compound 2

Fig. 12S 13C NMR (methanol-d_4, 100 MHz) spectrum of compound 2

Fig. 13S HSQC spectrum of compound 2

Fig. 14S HMBC spectrum of compound 2

Fig. 15S NOESY spectrum of compound 2

Fig. 16S 1H-1H COSY spectrum of compound 2

Fig. 17S Dose-response curves of the compounds from the green walnut husks of J. mandshurica.

Fig. 1S HR-ESI-TOF MS spectrum of compound 1.
Fig. 2S CD spectrum of compound 1.

Fig. 3S 1H NMR (methanol-d_4, 600 MHz) spectrum of compound 1.
Fig. 4S 13C NMR (methanol-d_4, 100 MHz) spectrum of compound 1.

Fig. 5S HSQC spectrum of compound 1.
Fig. 6S HMBC spectrum of compound 1.
Fig. 7S NOESY spectrum of compound 1.

Fig. 8S 1H-1H COSY spectrum of compound 1.

Fig. 9S HR-ESI-TOF MS spectrum of compound 2.
Fig. 10S CD spectrum of compound 2.

Fig. 11S 1H NMR (methanol-d_4, 600 MHz) spectrum of compound 2.
Fig. 12S 13C NMR (methanol-d_4, 100 MHz) spectrum of compound 2.

Fig. 13S HSQC spectrum of compound 2.
Fig. 14S HMBC spectrum of compound 2.

Fig. 15S NOESY spectrum of compound 2.
Fig. 16S 1H–1H COSY spectrum of compound 2.

Fig. 17S Dose-response curves of the compounds from the green walnut husks of *J. mandshurica*. On the X-axis, the log concentration (μM) is reported, and on the Y-axis, the inhibition. ETOP, etoposide, is the positive control. A The isolated compounds were assayed for their cytotoxicity against the A549 cancer cell line. B The isolated compounds were assayed for their cytotoxicity against the HeLa cancer cell line.