Supporting Information
for DOI: 10.1055/s-2008-1078210
© Georg Thieme Verlag KG Stuttgart · New York 2008
Valuable Versatile Reactivity of Thiaisatoic Anhydrides:
Expedient Thieno[1,4]diazepine-2,5-diones Solid-Phase
Synthesis

Yann Brouillette, Pascal Verdié, Jean Martinez and Vincent Lisowski *

Institut des Biomolécules Max-Mousseron, UMR 5247, CNRS, Universités Montpellier I et II, UFR de
Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093 Montpellier Cedex 5,
France

vincent.lisowski@univ-montp1.fr

Supporting Information

Table of contents

General experimental sectionS5
1-Methylthieno[3,2-\(d\)][1,3]oxazine-2,4-dione (5) ... S5
1-(4-Methoxybenzyl)[3,2-\(d\)][1,3]oxazine-2,4-dione (6) ... S5
Typical Experimental Procedure for Ring Opening of Thiaisatoic Anhydride 5-6 S6
{[3-(4-Methoxy-benzylamino)-thiophene-2-carbonyl]-amino}acetic acid (8a).................. S6
(S)-2-\{[3-(4-Methoxy-benzylamino)-thiophene-2-carbonyl]-amino\}propionic acid (8b)..... S6
(S)-2-\{[3-(4-Methoxy-benzylamino)-thiophene-2-carbonyl]-amino\}-3-phenylpropionic acid (8e)...S7
Typical Experimental Procedure for thieno\[3,2-\(e\)][1,4]diazepinediones (9-10) synthesis ... S7
3,4-Dihydro-1-methyl-1\(H\)-thieno[3,2-e][1,4]diazepine-2,5-dione (9a) S7
(S)-3,4-Dihydro-1,3-dimethyl-1\(H\)-thieno[3,2-e][1,4]diazepine-2,5-dione (9b) S8
3,4-Dihydro-1,4-dimethyl-1H-thieno[3,2-e][1,4]diazepine-2,5-dione (9c)............................. S8
(S)-4-Methyl-5a,6,7,8-tetrahydro-5H-pyrrolo[1,2-a]thieno[3,2-e][1,4]diazepine-5,10(4H)-
dione (9d)... S8
(S)-3-Benzyl-3,4-dihydro-1-methyl-1H-thieno[3,2-e][1,4]diazepine-2,5-dione (9e)........ S8
1-(4-Methoxybenzyl)-3,4-dihydro-1H-thieno[3,2-e][1,4]diazepine-2,5-dione (10a)........... S9
(S)-1-(4-Methoxybenzyl)-3,4-dihydro-3-methyl-1H-thieno[3,2-e][1,4]diazepine-2,5-
dione (10b).. S9
1-(4-Methoxybenzyl)-3,4-dihydro-4-methyl-1H-thieno[3,2-e][1,4]diazepine-2,5-dione (10c) S9
(S)-4-(4-Methoxybenzyl)-5a,6,7,8-tetrahydro-5H-pyrrolo[1,2-a]thieno[3,2-e][1,4]diazepine-
5,10(4H)-dione (10d)... S9
(S)-1-(4-Methoxybenzyl)-3-benzyl-3,4-dihydro-1H-thieno[3,2-e][1,4]diazepine-
2,5-dione (10e)... S10
Thiaisatoic anhydride resin (11).. S10
Typical Experimental Procedure for 3,4-dihydrothieno[3,2-e][1,4]diazepinedione
resins (13) Synthesis.. S10
Typical Experimental Procedure for 3,4-dihydrothieno[3,2-e][1,4]diazepinediones (14)
Synthesis.. S11
3,4-Dihydro-4-methyl-1H-thieno[3,2-e][1,4]diazepine-2,5-dione (14a).............................. S11
(S)-3,4-Dihydro-3,4-dimethyl-1H-thieno[3,2-e][1,4]diazepine-2,5-dione (14b)................. S11
(S)-6,7-Dihydroazeto[1,2-a]thieno[3,2-e][1,4]diazepine-5,9(4H,5aH)-dione (14c)......... S11
4-Benzyl-3,4-dihydro-1H-thieno[3,2-e][1,4]diazepine-2,5-dione (14d).............................. S12
(S)-5a,6,7,8-Tetrahydro-5H-pyrrolo[1,2-a]thieno[3,2-e][1,4]diazepine-5,10(4H)-dione (14e) S12
(5aS,7R)-7-Hydroxy-5a,6,7,8-tetrahydro-5H-pyrrolo[1,2-a]thieno[3,2-e][1,4]diazepine-
5,10(4H)-dione (14f)... S12
(5aS,6S)-6-Hydroxy-5a,6,7,8-tetrahydro-5H-pyrrolo[1,2-a]thieno[3,2-e][1,4]diazepine-
5,10(4H)-dione (14g)... S12
6,7,8,9-Tetrahydropyrido[1,2-a]thieno[3,2-e][1,4]diazepine-5,11(4H,5aH)-dione (14h)........S12

Proton NMR spectrum for 6..S13
Carbon NMR spectrum for 6..S14
Proton NMR spectrum for 8a...S15
Carbon NMR spectrum for 8a...S16
Proton NMR spectrum for 8b...S17
Carbon NMR spectrum for 8b...S18
Proton NMR spectrum for 8e...S19
Carbon NMR spectrum for 8e...S20
Proton NMR spectrum for 9a...S21
Carbon NMR spectrum for 9a...S22
Proton NMR spectrum for 9b...S23
Carbon NMR spectrum for 9b...S24
Proton NMR spectrum for 9c...S25
Carbon NMR spectrum for 9c...S26
Proton NMR spectrum for 9d...S27
Carbon NMR spectrum for 9d...S28
Proton NMR spectrum for 9e...S29
Carbon NMR spectrum for 9e...S30
Proton NMR spectrum for 10a...S31
Carbon NMR spectrum for 10a...S32
Proton NMR spectrum for 10b...S33
Carbon NMR spectrum for 10b...S34
Proton NMR spectrum for 10c...S35
Carbon NMR spectrum for 10c...S36
Proton NMR spectrum for 10d...S37
General Experimental Section. Starting materials and solvents were obtained commercially and used as received. Melting points were determined in open capillaries and are uncorrected. Optical rotations were measured on a Perkin Elmer polarimeter 341 using a 100mm path length cell at \(\lambda = 589 \) nm (Sodium D line). Infrared spectra were taken on a Perkin Elmer Spectrum One apparatus. Mass spectral data, HRMS/LRMS were obtained by (FAB/ESI) analyses. \(^1\)H NMR (300 MHz) and \(^{13}\)C NMR (75 MHz) spectra were recorded in DMSO-\(d_6\) at room temperature. Chemical shifts are reported in parts per million (δ units) downfield/upfield from residual DMSO (δ 2.50 and 39.5); coupling constants (\(J\)) are reported in hertz (Hz). The quaternary carbon of the thiophene ring emits a very weak signal on the \(^{13}\)C NMR spectrum in comparison to all other signals of the molecule. HPLC analyses were performed on Merck Chromolith Flash RP18e (5µm, 225 × 4.6 mm) analytical reversed-phase column using a flow rate of 3.0 mL/min, and gradients of 100/0 to 0/100 eluents A/B over 5 min (method A), in which eluents A = H$_2$O-0.1% TFA and B = CH$_3$CN-0.1% TFA. Retention times (\(R_t\)) are reported as follows: \(R_t\) (min) and elution conditions. HPLC preparative purification was performed on Chromolith SemiPrep RP-18 (5µm, 100 × 10 mm) semi preparative column, using a flow rate of 20 mL/min and gradient of 100/0 to 0/100 eluents A/B over 20 min (method B). Analytical thin-layer chromatography (TLC) was performed using aluminum-backed silica gel plates coated with a 0.2 mm thickness of silica gel. Retention factors (\(R_f\)) are reported as follows: \(R_f\) (fraction) and elution conditions. Flash column chromatography was performed with a 230-400 mesh silica gel.

1-Methylthieno[3,2-\(d\)][1,3]oxazine-2,4-dione (5) \(N\)-methylation of thiaisatoic anhydride with methyl iodide (MeI) was performed using literature procedures (mp 186-188°C, lit.\(^2\) mp 189°C).

1-(4-Methoxybenzyl)[3,2-\(d\)][1,3]oxazine-2,4-dione (6) A stirring solution of thiaisatoic anhydride 1 (5.00 g, 29.6 mmol) in DMF (25 mL) was treated with K$_2$CO$_3$ (4.91 g, 35.5 mmol) and \(p\)-methoxybenzyl chloride (4.43 mL, 32.5 mmol) at rt for 1 h. A 5% HCl solution (100 mL) is gently poured into the resulting mixture, stirred 5 min and left to stand 5 min. The formed precipitate was filtered over a frit, washed with water (2 × 100 mL) and Et$_2$O (2 × 100 mL), and dried in a dessicator to
afford N-PMB-thiaisatoic 6 in 81% yield. Beige solid; mp 181-182°C; ¹H NMR (DMSO-d₆): δ 8.27 (d, 1H, J = 5.3), 7.34 (d, 2H, J = 8.6), 7.28 (d, 1H, J = 5.3), 6.90 (d, 2H, J = 8.6), 5.13 (s, 2H), 3.71 (s, 3H); ¹³C NMR (DMSO-d₆): δ 158.9, 154.3, 149.6, 149.4, 139.9, 128.8, 127.3, 117.9, 114.0, 107.5, 55.1, 49.1; HRMS: calcd for [M + H⁺] C₁₄H₁₂N₁O₄S 290.0487, found 290.0481; Rₜ: 2.30 (method A).

Typical Experimental Procedure for Ring Opening of Thiaisatoic Anhydride 5-6. A stirring suspension of N-p-methoxybenzylthieno[3,2-d][1,3]oxazine-2,4-dione 6 (7.00 g, 24.22 mmol) and the corresponding α-amino acid (26.64 mmol) in 100 mL of water was treated with Et₃N (7.43 mL, 53.29 mmol) at rt for 30 min. Drops of DMF can be added to favour complete solubility. The resulting solution was partitioned with EtOAc. The aqueous phase was extracted with EtOAc (40 mL × 3) and the combined organic layers were washed with brine, dried over Na₂SO₄, filtered and evaporated to afford the corresponding product 8.

{(3-(4-Methoxy-benzylamino)-thiophene-2-carbonyl)-amino}acetic acid (8a) Orange solid, hygroscopic, mp 30°C; ¹H NMR (DMSO-d₆): δ 7.76 (t, 1H, J = 5.7), 7.66 (t, 1H, J = 5.9), 7.48 (d, 1H, J = 5.3), 7.24 (d, 2H, J = 8.3), 6.88 (d, 2H, J = 8.2), 6.78 (d, 1H, J = 5.4), 4.35 (d, 2H, J = 5.7), 3.79 (d, 2H, J = 6.1), 3.72 (s, 3H); ¹³C NMR (DMSO-d₆): δ 171.6, 164.9, 158.3, 154.5, 131.9, 128.9, 128.4, 117.8, 113.9, 100.6, 55.0, 47.5, 40.8; HRMS: calcd for [M + H⁺] C₁₅H₁₇N₂O₄S 321.0909, found 321.0881; Rₜ: 2.27 (method A).

(S)-2-[(3-(4-Methoxy-benzylamino)-thiophene-2-carbonyl)-amino]propionic acid (8b) Yellow solid, mp 140°C (decomp.); [α]°D −24.1 (c 0.3, DMSO); ¹H NMR (DMSO-d₆): δ 7.68 (t, 1H, J = 5.6), 7.61 (d, 1H, J = 7.1), 7.48 (d, 1H, J = 5.3), 7.24 (d, 2H, J = 8.4), 6.88 (d, 2H, J = 8.4), 6.78 (d, 1H, J = 5.4), 4.35 (d, 2H, J = 6.6), 4.34 (quad, 1H, J = 7.2), 3.70 (s, 3H), 1.35 (d, 3H, J = 7.3); ¹³C NMR (DMSO-d₆): δ 174.5, 164.6, 158.3, 154.7, 131.9, 128.9, 128.4, 117.7, 113.9, 100.7, 55.1, 47.7, 47.6, 17.0; MS (ESI, m/z) for [M+H⁺] C₁₆H₁₉N₂O₄S 335.0; Rₜ: 2.41 (method A).
(S)-2-[[3-(4-Methoxy-benzylamino)-thiophene-2-carbonyl-amino]-3-phenylpropionic acid (8e) White solid, mp 68-70°C; $[^{20}D]_2 -18.7$ (c 0.3, DMSO); 1H NMR (DMSO-d_6): δ 7.57 (m, 2H), 7.46 (d, 1H, $J = 5.4$), 7.26 (m, 5H), 7.22 (d, 2H, $J = 7.3$), 6.87 (d, 2H, $J = 7.1$), 6.74 (d, 1H, $J = 5.4$), 4.52 (quad, 1H, $J = 8.0$), 4.31 (d, 2H, $J = 5.5$), 3.71 (s, 3H), 3.10 (d, 2H, $J = 8.0$); 13C NMR (DMSO-d_6): δ 173.4, 164.6, 158.3, 154.5, 138.3, 131.8, 129.1, 129.0, 128.4, 128.1, 126.3, 117.6, 113.9, 100.6, 55.0, 53.6, 47.5, 36.1; HRMS: calcd for [M + H$^+$] $C_{22}H_{23}N_2O_4S$ 411.1379, found 411.1360; R: 2.84 (method A).

Typical Experimental Procedure for thieno[3,2-e][1,4]diazepinediones (9-10) synthesis. A solution of acid 8 in AcOH was magnetically stirred at reflux from 1 to 6 h. The resulting solution was concentrated under reduce pressure and triturated with Et$_2$O to afford the corresponding thienodiazepine 10. This procedure can be directly applied to the acids 7-8 crude mixture, after evaporation of volatile material, to attain a one flask protocol directly to thienodiazepines 9-10. The work-up remains the same. Traces of PMB cleavage from diazepines 10 after prolonged heating (>18 h) in AcOH can be observed by LC-MS. Alternative route: A stirring solution of acids 7-8 in dry DCM was treated with SOCl$_2$ (5000 mol%) at reflux for 1 h. Volatile material was evaporated and column chromatography purification was done when necessary.

3,4-Dihydro-1-methyl-1H-thieno[3,2-e][1,4]diazepine-2,5-dione (9a): yield 55 % (partially hydrophilic), beige solid, mp 155°C (decomp); 1H NMR (DMSO-d_6): δ 8.40 (br s, 1H), 7.88 (d, 1H, $J = 5.3$), 7.22 (d, 1H, $J = 5.3$), 3.75 (d, 2H, $J = 5.1$), 3.30 (s, 3H); 13C NMR (DMSO-d_6): δ 168.4, 164.2, 142.4, 131.3, 122.9, 46.1, 34.5; HRMS: calcd for [M + H$^+$] $C_{12}H_{19}N_2O_2S$ 197.0385, found 197.0388; R: 1.15 (method A); IR (cm$^{-1}$): 3368 (NH), 1668 and 1638 (C=O).

(S)-3,4-Dihydro-1,3-dimethyl-1H-thieno[3,2-e][1,4]diazepine-2,5-dione (9b): yield 61 %, beige solid, mp 211-214°C; $[^{20}D]_2 +251.0$ (c 0.2, DMSO); 1H NMR (DMSO-d_6): δ 8.28 (d, 1H, $J = 3.5$), 7.88 (d, 1H, $J = 5.4$), 7.22 (d, 1H, $J = 5.4$), 3.93 (m, 1H), 3.32 (s, 3H), 1.29 (d, 3H, $J = 6.8$); 13C NMR
(DMSO-d_6): δ 169.5, 163.1, 141.6, 130.7, 123.6, 122.4, 48.6, 34.4, 14.8; HRMS: calcd for [M + H$^+$] $C_9H_{11}N_2O_2S$ 211.0541, found 211.0556; R: 1.21 (method A).

3,4-Dihydro-1,4-dimethyl-1H-thieno[3,2-e][1,4]diazepine-2,5-dione (9c): yield 79%, beige solid, mp 170-173$^\circ$C; 1H NMR (DMSO-d_6): δ 7.87 (d, 1H, J = 5.4), 7.21 (d, 1H, J = 5.4), 4.00 (s, 2H), 3.30 (s, 3H), 3.06 (s, 3H); 13C NMR (DMSO-d_6): δ 166.7, 162.1, 141.7, 130.6, 123.3, 122.1, 53.4, 35.5, 33.8; HRMS: calcd for [M + H$^+$] $C_9H_{11}N_2O_2S$ 211.0541, found 211.0548; R: 1.19 (method A).

(S)-4-Methyl-5a,6,7,8-tetrahydro-5H-pyrrolo[1,2-a]thieno[3,2-e][1,4]diazepine-5,10(4H)-dione (9d): yield 74%, beige solid, mp 48-50$^\circ$C; $[\alpha]_{D}^{20}$ +310.1 (c 1.0, DMSO); 1H NMR (DMSO-d_6): δ 7.86 (d, 1H, J = 5.4), 7.23 (d, 1H, J = 5.4), 4.20 (d, 1H, J = 7.3), 3.50 (m, 1H), 3.43 (m, 1H), 3.33 (s, 3H), 2.53 (m, 1H), 2.00 (m, 1H), 1.86 (m, 2H); 13C NMR (DMSO-d_6): δ 168.0, 160.3, 141.1, 130.2, 124.4, 122.6, 57.8, 46.3, 34.7, 26.5, 23.5; HRMS: calcd for [M + H$^+$] $C_{11}H_{13}N_2O_2S$ 237.0698, found 237.0702; R: 1.45 (method A).

(S)-3-Benzyl-3,4-dihydro-1-methyl-1H-thieno[3,2-e][1,4]diazepine-2,5-dione (9e): yield 77%, brown solid, mp 78-80$^\circ$C; $[\alpha]_{D}^{20}$ +72.4 (c 0.1, DMSO); 1H NMR (DMSO-d_6): δ 8.4 (d, 1H, J = 5.1), 7.88 (d, 1H, J = 5.4), 7.32 (d, 2H, J = 7.2), 7.24 (m, 4H), 4.05 (m, 1H), 3.22 (s, 3H), 3.19 (dd, 1H, J = 14.1, 5.8), 2.92 (dd, 1H, J = 14.1, 8.6); 13C NMR (DMSO-d_6): δ 168.6, 162.9, 141.8, 137.8, 130.8, 129.4, 129.0, 128.2, 126.4, 122.5, 55.0, 34.5, 34.2; HRMS: calcd for [M + H$^+$] $C_{15}H_{15}N_2O_2S$ 287.0854, found 287.0856; R: 2.03 (method A).

1-(4-Methoxybenzyl)-3,4-dihydro-1H-thieno[3,2-e][1,4]diazepine-2,5-dione (10a): yield 64%, beige solid, mp 162-165$^\circ$C; 1H NMR (DMSO-d_6): δ 8.48 (t, 1H, J = 5.0), 7.80 (d, 1H, J = 5.4), 7.21 (d, 1H, J = 5.4), 7.09 (d, 2H, J = 8.5), 6.84 (d, 2H, J = 8.5), 5.05 (s, 2H), 3.85 (d, 2H, J = 5.2), 3.69 (s, 3H); 13C NMR (DMSO-d_6): δ 167.8, 163.6, 158.4, 140.6, 130.7, 128.8, 128.1, 124.2, 122.6, 114.0, 55.0, 48.2, 45.7; HRMS: calcd for [M + H$^+$] $C_{15}H_{15}N_2O_2S$ 303.0803, found 303.0810; R: 1.94 (method A), R_f: 0.4, CHCl$_3$-MeOH (19:1).

S8
(S)-1-(4-Methoxybenzyl)-3,4-dihydro-3-methyl-1H-thieno[3,2-e][1,4]diazepine-2,5-dione (10b): yield 95 %, beige solid, mp 75°C; [α]D 20 +239.8 (c 1.0, DMSO); 1H NMR (DMSO-d6): δ 8.35 (d, 1H, J = 4.0), 7.80 (d, 1H, J = 5.4), 7.24 (d, 1H, J = 5.4), 7.07 (d, 2H, J = 8.4), 6.83 (d, 2H, J = 8.4), 5.21 (d, 1H, J = 15.5), 4.92 (d, 1H, J = 15.5), 4.07 (m, 1H), 3.69 (s, 3H), 1.34 (d, 3H, J = 6.7); 13C NMR (DMSO-d6): δ 169.4, 163.0, 158.4, 140.2, 130.6, 128.9, 128.2, 124.8, 122.5, 113.9, 55.0, 48.6, 48.6, 14.8; HRMS: calcd for [M + H]+ C16H17N2O3S 317.0960, found 317.0965; Rf: 0.5, CHCl3-MeOH (19:1).

1-(4-Methoxybenzyl)-3,4-dihydro-4-methyl-1H-thieno[3,2-e][1,4]diazepine-2,5-dione (10c): yield 98 %, beige solid, mp 148-150°C; 1H NMR (DMSO-d6): δ 7.79 (d, 1H, J = 5.4), 7.17 (d, 1H, J = 5.4), 7.07 (d, 2H, J = 8.4), 6.84 (d, 2H, J = 8.6), 5.04 (s, 2H), 4.10 (s, 2H), 3.69 (s, 3H), 3.10 (s, 3H); 13C NMR (DMSO-d6): δ 166.6, 162.0, 158.4, 140.4, 130.5, 128.7, 128.1, 124.4, 122.1, 114.0, 55.0, 53.4, 48.1, 35.5; HRMS: calcd for [M + H]+ C16H17N2O3S 317.0960, found 317.0952; Rf: 0.6, AcOEt.

(S)-4-(4-Methoxybenzyl)-5a,6,7,8-tetrahydro-5H-pyrrolo[1,2-a]thieno[3,2-e][1,4]diazepine-5,10(4H)-dione (10d): yield 92 %, beige solid, mp 188-191°C; [α]D 20 313.8 (c 0.3, DMSO); 1H NMR (DMSO-d6): δ 7.78 (d, 1H, J = 5.4), 7.19 (d, 1H, J = 5.4), 7.06 (d, 2H, J = 8.3), 6.84 (d, 2H, J = 8.4), 5.17 (d, 1H, J = 15.6), 4.98 (d, 1H, J = 15.6), 4.33 (dd, 1H, J = 8.0, 2.9), 3.70 (s, 3H), 3.50 (m, 2H), 2.56 (m, 1H), 2.04 (m, 1H), 1.95 (m, 2H); 13C NMR (DMSO-d6): δ 167.9, 160.3, 158.4, 139.8, 130.1, 128.8, 128.1, 125.5, 122.6, 114.0, 57.8, 55.0, 49.0, 46.4, 26.6, 23.6; HRMS: calcd for [M + H]+ C18H19N2O3S 343.1116, found 343.1121; Rf: 2.21 (method A), Rf: 0.6, CHCl3-AcOEt (1:4).

(S)-1-(4-Methoxybenzyl)-3-benzyl-3,4-dihydro-1H-thieno[3,2-e][1,4]diazepine-2,5-dione (10e): yield 75 %, orange solid, mp 66-68°C; [α]D 20 27.5 (c 0.1, DMSO); 1H NMR (DMSO-d6): δ 8.50 (d, 1H, J = 3.5), 7.81 (d, 1H, J = 5.3), 7.37-7.20 (m, 6H), 7.03 (d, 2H, J = 8.5), 6.81 (d, 2H, J = 8.6), 5.23 (d, 1H, J = 15.5), 4.89 (d, 1H, J = 15.5), 4.17 (m, 1H), 3.68 (s, 3H), 3.24 (dd, 1H, J = 13.8, 5.3), 3.58 (s, 3H).
2.98 (dd, 1H, J = 13.5, 9.0); 13C NMR (DMSO-d_6): δ 168.6, 162.8, 158.4, 140.4, 137.8, 130.8, 129.5, 128.9, 128.4, 128.2, 126.5, 124.9, 122.7, 113.9, 55.0, 55.0, 48.6, 34.3; HRMS: calcd for [M + H$^+$]

C$_{22}$H$_{21}$N$_2$O$_3$S 393.1273, found 393.1298; R_t: 2.64 (method A), R_f: 0.4, CHCl$_3$-AcOEt (4:1).

Thiaisatoic anhydride resin (11): Wang bromide resin (5.0 g, 1.6 mmol/g), purchased from Novabiochem® or prepared from Wang resin, was swollen in a 200 mL glass SPOS fritted tube using 40 mL of dry DMF, washed with 40 mL of dry DMF (×2) and treated with a solution of anhydride 1 (2.03 g, 12.0 mmol) and K$_2$CO$_3$ (2.21 g, 16.0 mmol) in 50 mL of DMF for 1 h at rt. The filtered resin was washed sequentially with 40 mL solutions of H$_2$O (×2), DMF (×2), H$_2$O (×2), DMF (×2) and DCM (×3). The beige resin was dried *in vacuo* and usually stored in a dessicator under vacuum or under argon in the fridge; IR (cm$^{-1}$): 1774 and 1721(C=O).

Typical Experimental Procedure for 3,4-dihydrothieno[3,2-e][1,4]diazepine-2,5-dione resins (13) Synthesis. Resin 11 (0.400 g, 0.56 mmol) was loaded in a 20 mL polypropylene tube equipped with a polyethylene frit, swollen in 10 mL of DMF, filtered, washed with 10 mL of DMF (×2) and swollen in 10 mL of DMF-H$_2$O (4:1). The resin suspension was treated with the respective α-amino acid (500 mol%) and Et$_3$N (1000 mol%). The resulting mixture was stirred for 5 h at 50 °C in an Argonaut Quest parallel synthesizer apparatus, cooled, filtered and washed sequentially with 10 mL volumes of DMF (×2), H$_2$O (×2), DMF (×2), H$_2$O (×2), DMF (×2), H$_2$O (×2), DMF (×2), DCM (×3). The beige resin was dried *in vacuo* and stored in the fridge under argon.

Typical Experimental Procedure for 3,4-dihydrothieno[3,2-e][1,4]diazepine-2,5-diones (14) Synthesis. Diazepine resin 13 (0.400 g, ~0.52 mmol), in the same polypropylene tube, was swollen in 8 mL of dry DCM, filtered, washed with 8 mL of dry DCM (×2), treated with a 50% v/v solution of TFA in DCM (8mL) and shaken for 30 min. The resin was filtered, washed with DCM (×2), and treated again with TFA-DCM (1:1) for an additional 30 min. The resin was filtered and washed with DCM (×2). The combined filtrates and washings were evaporated under reduced pressure and triturated with a pentane-Et$_2$O solution (1:1) to afford thienodiazepines 14.
3,4-Dihydro-4-methyl-1H-thieno[3,2-e][1,4]diazepine-2,5-dione (14a): yield 95%, beige solid, mp >210°C; \(^1\)H NMR (DMSO-\(d_6 \)): \(\delta \) 10.89 (s, 1H), 7.78 (d, 1H, \(J = 5.2 \)), 6.80 (d, 1H, \(J = 5.2 \)), 3.94 (s, 2H), 3.05 (s, 3H); \(^13\)C NMR (DMSO-\(d_6 \)): \(\delta \) 168.0, 162.6, 138.7, 131.3, 121.6, 121.1, 53.6, 35.9; HRMS: calcd for [M + H\(^+\)] \(C_8H_9N_2O_2S \) 197.0385, found 197.0388; \(R_t \): 1.01 (method A).

\((S)\)-3,4-Dihydro-3,4-dimethyl-1H-thieno[3,2-e][1,4]diazepine-2,5-dione (14b): yield 90%, beige solid, mp 191-194°C; \([\alpha]^{20}_D +51.6 \) (c 0.1, DMSO); \(^1\)H NMR (DMSO-\(d_6 \)): \(\delta \) 10.91 (s, 1H), 7.78 (d, 1H, \(J = 5.1 \)), 6.80 (d, 1H, \(J = 5.1 \)), 4.20 (quad, 1H, \(J = 6.9 \)), 2.93 (s, 3H), 1.34 (d, 3H, \(J = 7.0 \)); \(^13\)C NMR (DMSO-\(d_6 \)): \(\delta \) 169.2, 162.5, 138.1, 131.4, 128.5, 121.3, 54.7, 30.8, 12.6; HRMS: calcd for [M + H\(^+\)] \(C_8H_{11}N_2O_2S \) 211.0541, found 211.0575; \(R_t \): 1.24 (method A).

\((S)\)-6,7-Dihydroazeto[1,2-a]thieno[3,2-e][1,4]diazepine-5,9(4H,5aH)-dione (14c): yield 80%, white solid, mp 215°C (decomp.); \([\alpha]^{20}_D +305.9 \) (c 0.1, DMSO); \(^1\)H NMR (DMSO-\(d_6 \)): \(\delta \) 10.90 (s, 1H), 7.78 (d, 1H, \(J = 5.3 \)), 6.85 (d, 1H, \(J = 5.2 \)), 4.90 (t, 1H, \(J = 7.6 \)), 4.07 (quad, 1H, \(J = 8.5 \)), 3.79 (td, 1H, \(J = 8.8, 3.6 \)), 2.60 (m, 1H), 2.35 (m, 1H); \(^13\)C NMR (DMSO-\(d_6 \)): \(\delta \) 170.3, 162.4, 138.3, 131.1, 122.9, 119.6, 59.6, 45.5, 18.2; HRMS: calcd for [M + H\(^+\)] \(C_{9}H_{11}N_2O_2S \) 209.0385, found 209.0386; \(R_t \): 1.05 (method A).

4-Benzyl-3,4-dihydro-1H-thieno[3,2-e][1,4]diazepine-2,5-dione (14d): yield 95%, beige solid, mp 51-54°C; \(^1\)H NMR (DMSO-\(d_6 \)): \(\delta \) 10.91 (s, 1H), 7.82 (d, 1H, \(J = 5.3 \)), 7.36-7.27 (m, 5H), 6.82 (d, 1H, \(J = 5.3 \)), 4.71 (s, 2H), 3.95 (s, 2H); \(^13\)C NMR (DMSO-\(d_6 \)): \(\delta \) 168.0, 162.6, 139.1, 137.1, 131.8, 128.5, 127.6, 127.3, 121.7, 115.1, 52.2, 51.3; HRMS: calcd for [M + H\(^+\)] \(C_{14}H_{13}N_2O_2S \) 273.0698, found 273.0708; \(R_t \): 1.80 (method A).

\((S)\)-5a,6,7,8-Tetrahydro-5H-pyrrolo[1,2-a]thieno[3,2-e][1,4]diazepine-5,10(4H)-dione (14e): yield 86%, white solid, mp >210°C, lit. \(^4\) mp 248°C; HRMS: calcd for [M + H\(^+\)] \(C_{10}H_{11}N_2O_2S \) 223.0541, found 223.0533; \(R_t \): 1.25 (method A).
(5aS,7R)-7-Hydroxy-5a,6,7,8-tetrahydro-5H-pyrrolo[1,2-α]thieno[3,2-e][1,4]diazepine-5,10(4H)-dione (14f): yield 79%, pink solid, mp 210°C (decomp.); [α]D +187.1 (c 0.2, DMSO); 1H NMR (DMSO-d6): δ 10.96 (s, 1H), 7.79 (d, 1H, J = 5.2), 6.82 (d, 1H, J = 5.3), 5.12 (d, 1H, J = 3.5), 4.27 (m, 2H) 3.76 (d, 1H, J = 12.0), 2.58 (m, 1H), 2.54 (s, 1H), 1.99 (m, 1H); 13C NMR (DMSO-d6): δ 169.0, 162.0, 138.4, 131.6, 122.5, 121.5, 67.9, 57.2, 54.2, 35.3; HRMS: calcd for [M + H]+ C10H11N2O3S 239.0490, found 239.0484; Rf: 0.93 (method A).

(5aS,6S)-6-Hydroxy-5a,6,7,8-tetrahydro-5H-pyrrolo[1,2-α]thieno[3,2-e][1,4]diazepine-5,10(4H)-dione (14g): yield 88%, white solid, mp >225°C; [α]D +330.3 (c 0.1, DMSO); 1H NMR (DMSO-d6): δ 10.96 (s, 1H), 7.79 (d, 1H, J = 5.3), 6.82 (d, 1H, J = 5.3), 4.80 (s, 1H), 3.88 (s, 1H), 3.66 (m, 1H), 3.52 (m, 1H), 2.54 (s, 1H), 1.89 (m, 2H); 13C NMR (DMSO-d6): δ 168.1, 160.9, 138.1, 131.1, 122.1, 121.7, 70.5, 65.9, 44.8, 31.8; HRMS: calcd for [M + H]+ C10H11N2O3S 239.0490, found 239.0502; Rf: 0.85 (method A).

6,7,8,9-Tetrahydropyrido[1,2-α]thieno[3,2-e][1,4]diazepine-5,11(4H,5aH)-dione (14h): yield 71% (from a racemic mixture of piperidine-2-carboxylic acid); white solid, mp >225°C; 1H NMR (DMSO-d6): δ 10.85 (s, 1H), 7.79 (d, 1H, J = 5.3), 6.79 (d, 1H, J = 5.3), 4.15 (m, 2H), 2.89 (m, 1H), 2.11 (m, 1H), 1.80 (m, 1H), 1.71-1.57 (m, 4H); 13C NMR (DMSO-d6): δ 169.4, 162.9, 138.9, 131.4, 121.7, 121.3, 52.5, 38.7, 22.3, 21.9, 18.0; HRMS: calcd for [M + H]+ C11H13N2O2S 237.0698, found 237.0699; Rf: 1.45 (method A).
AMX300, in DMSO-d6, 303K
AMX300, in DMSO-d6, 303K
AXX396 in DMSO-d6, 303K
AMX300, in DMSO-δ6, 303K
References