Supporting Information
for DOI: 10.1055/s-0028-1088210
© Georg Thieme Verlag KG Stuttgart · New York 2008
Mild Michael Addition of Glycine Imines to Aromatic Nitroalkenes Catalyzed by DBU with LiOTf as Additive

Wei Li, a Han Liu, a Da-Ming Du* a,b

a Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.

b School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081, P. R. China.

E-mail: dudm@pku.edu.cn

Supporting Information

Contents

General remarks...S2

General procedures..S2

Characterization of products..S2

Copies of ¹H NMR and ¹³C NMR...S6
General remarks

Commercially available compounds were used without further purification. Solvents were dried according to standard procedures. Column chromatography was carried out using silica gel (200-300 mesh). Melting points were measured on a XT-4 melting point apparatus and uncorrected. The 1H NMR spectra were recorded on Mercury 300 MHz or 200 MHz spectrometers, while the 13C NMR spectra were recorded at 75 or 50 MHz. Infrared spectra were obtained on a Nicolet AVATAR 330 FT-IR spectrometer. Mass spectra were obtained on a VG-ZAB-HS (EI) mass spectrometer. The nitroalkenes used in this work are commercial available or prepared according to literature.

General procedure for Michael Addition of Glycine Imines to Aromatic Nitroalkenes

To a stirred solution of nitroalkene (1.2 mmol) and LiOTf (16 mg, 0.1 mmol) and ethyl diphenylmethyleneiminoacetate (267 mg, 1 mmol) or tert-butyl diphenylmethyleneiminoacetate (295 mg, 1 mmol) in dry THF (1 mL), was added DBU (15 mg, 0.1 mmol) in dry THF (1 mL). The mixture was stirred at room temperature for 24 h. After being quenched by water, the mixture was extracted by DCM. The organic phase was separated and dried with Na$_2$SO$_4$. The diastereoselectivity was determined by NMR analysis of crude product. The sample for analysis was purified on column chromatography (silica gel, 200-300 mesh) using petroleum ether/ethyl acetate 20:1 as eluent, and recrystallization in Et$_2$O and petroleum ether.

syn-Ethyl 2-diphenylmethyleneimino-4-nitro-3-phenylbutanoate (5a). According to the general procedure, a white solid was obtained. m. p. 84–85 °C. 1H NMR (300 MHz, CDCl$_3$): $\delta = 1.20$ (t, $J = 7.2$ Hz, 3H), 4.11–4.16 (m, 2H), 4.27–4.38 (m, 2H), 5.14–5.18 (m, 2H), 6.60–6.62 (d, $J = 6.9$ Hz, 2H), 7.14–7.48 (m, 11H), 7.64 (d, $J = 6.9$ Hz, 2H). IR: 1735, 1551, 1446, 1368, 1316, 1290, 1190, 1024, 695 cm$^{-1}$. MS (70 eV, EI): m/z (%) 416 (M$^+$, 3), 343 (10), 296 (23), 267 (21), 266 (100), 193 (47), 165 (50). Elemental analysis (%) calcd for C$_{25}$H$_{24}$N$_2$O$_4$: C 72.10, H 5.81, N 6.73; found: C 71.74, H 5.83, N 6.55.

syn-Ethyl 2-diphenylmethyleneimino-3-(4-methylphenyl)-4-nitrobutanoate (5b). According to the general procedure, a white solid was obtained. m. p. 102–103 °C. 1H NMR (300 MHz, CDCl$_3$): $\delta = 1.19$ (t, $J = 6.9$ Hz, 3H), 2.29 (s, 3H), 4.10–4.15 (m, 2H), 4.27–4.32 (m, 2H), 5.10–5.12 (m, 2H), 6.15 (d, $J = 6.0$ Hz, 2H), 7.04 (s, 4H), 7.27–7.45 (m, 6H), 7.65 (d, $J = 7.5$ Hz, 2H). 13C NMR (75 MHz, CDCl$_3$): $\delta = 14.0$, 21.0, 46.2, 61.5, 68.7, 76.3, 127.3, 128.0, 128.2, 128.3, 128.6, 128.9, 129.3, 130.9, 134.0, 135.4, 137.4, 138.7, 169.9, 172.6. IR: 1736, 1732, 1619, 1552, 1516, 1446, 1379, 1317, 1288, 1182, 1026, 695 cm$^{-1}$. MS (70 eV, EI): m/z (%) 430 (M$^+$, 4), 413 (3), 357 (7), 310 (17), 267 (27), 266 (100), 238 (22), 193 (69), 165 (61). Elemental analysis (%) calcd for C$_{26}$H$_{26}$N$_2$O$_4$: C 72.54, H 6.09, N 6.51; found: C 72.36, H 6.22, N 6.35.

anti-Ethyl 2-diphenylmethyleneimino-3-(4-methoxyphenyl)-4-nitrobutanoate (5c). According to the general procedure, a white solid was obtained. m. p. 129–130 °C. 1H NMR (300 MHz, CDCl$_3$): $\delta = 1.18$ (t, $J = 7.2$ Hz, 3H), 3.74 (s, 3H), 3.94–4.08 (m, 3H), 4.15–4.28 (m, 2H), 6.04 (d, $J = 5.2$ Hz, 1H), 6.69–6.70 (m, 4H), 7.19–7.48 (m, 9H), 7.79 (d, $J = 6.3$ Hz, 2H). 13C NMR (75 MHz, CDCl$_3$): $\delta = 14.1$, 55.2, 58.1, 61.5, 65.6, 77.2, 101.6, 114.1, 125.4, 126.7, 127.7, 127.9, 128.5, 128.9, 129.1, 129.3, 141.9, 142.4, 159.1, 171.4. IR: 1735, 1611, 1550, 1515, 1450, 1365, 1334, 1305, 1251, 1181, 1133, 1032, 832, 756, 721 cm$^{-1}$. MS (70 eV, EI): m/z (%) 446 (M$^+$, 6), 372 (7), 325 (16), 298 (22), 266 (39), 265 (100), 192 (67), 165 (50), 91 (37). Elemental analysis (%) calcd for C$_{26}$H$_{26}$N$_2$O$_5$:
anti-Ethyl 2-diphenylmethyleneimino-3-(4-fluorophenyl)-4-nitrobutanoate (5d). According to the general procedure, a white solid was obtained. m. p. 99–100 °C. 1H NMR (300 MHz, CDCl$_3$): δ = 1.18 (t, J = 7.2 Hz, 3H), 3.95–4.03 (m, 2H), 4.07–4.11 (m, 1H), 4.19–4.27 (m, 2H), 6.04 (d, J = 4.5 Hz, 1H), 6.73–6.75 (m, 2H), 6.86–6.91 (m, 2H), 7.26–7.48 (m, 8H), 7.80 (d, J = 8.1 Hz, 2H). 13C NMR (75 MHz, CDCl$_3$): δ = 14.1, 57.8, 61.6, 65.6, 77.3, 101.4, 115.6, 115.9, 125.4, 126.7, 127.8, 128.0, 128.6, 129.2, 129.5, 129.6, 131.1, 131.15, 141.6, 142.2, 171.1. IR: 1737, 1551, 1512, 1449, 1364, 1337, 1302, 1232, 1162, 1136, 749, 594 cm$^{-1}$. MS (70 eV, EI): m/z (%) 434 (M$^+$, 4), 360 (13), 313 (44), 286 (21), 265 (100), 193 (64), 165 (63). Elemental analysis (%) calcd for C$_{25}$H$_{23}$FN$_2$O$_4$: C 69.91, H 5.34, N 6.45; found: C 69.10, H 5.29, N 6.38.

anti-Ethyl 3-(4-chlorophenyl)-2-diphenylmethyleneimino-4-nitrobutanoate (5e). According to the general procedure, a white solid was obtained. m. p. 134–135 °C. 1H NMR (300 MHz, CDCl$_3$): δ = 1.19 (t, J = 7.2 Hz, 3H), 3.96–4.08 (m, 3H), 4.19–4.24 (m, 2H), 6.03 (d, J = 4.2 Hz, 1H), 6.69 (d, J = 8.4 Hz, 2H), 7.15–7.48 (m, 10H), 7.78 (d, J = 7.5 Hz, 2H). 13C NMR (75 MHz, CDCl$_3$): δ = 14.1, 57.8, 61.7, 65.5, 77.4, 101.2, 125.3, 126.6, 127.8, 128.0, 128.6, 129.0, 129.20, 129.24, 133.7, 135.9, 141.6, 142.1, 171.0. IR: 1736, 1551, 1494, 1450, 1368, 1335, 1203, 1137, 1093, 1014, 759, 744, 705 cm$^{-1}$. MS (70 eV, EI): m/z (%) 450 (M$^+$, 8), 403 (16), 329 (19), 265 (100), 192 (41), 164 (37). Elemental analysis (%) calcd for C$_{25}$H$_{23}$FN$_2$O$_4$: C 66.59, H 5.14, N 6.21; found: C 66.58, H 5.22, N 6.01.

syn-Ethyl 3-(4-bromophenyl)-2-diphenylmethyleneimino-4-nitrobutanoate (5f). According to the general procedure, a white solid was obtained. m. p. 108–109 °C. 1H NMR (300 MHz, CDCl$_3$): δ = 1.21 (t, J = 7.2 Hz, 3H), 4.12–4.17 (m, 2H), 4.25–4.30 (m, 2H), 5.11–5.14 (m, 2H), 6.67 (d, J = 6.3 Hz, 2H), 7.03 (d, J = 8.4 Hz, 2H), 7.27–7.46 (m, 8H), 7.62–7.65 (d, J = 7.5 Hz, 2H). 13C NMR (75 MHz, CDCl$_3$): δ = 14.0, 46.0, 61.7, 68.2, 75.8, 121.8, 127.2, 128.3, 128.4, 128.7, 128.8, 129.9, 131.0, 131.8, 135.1, 138.3, 169.6, 173.1. IR: 1734, 1621, 1552, 1489, 1446, 1378, 1316, 1288, 1181, 1075, 1023, 1011, 784, 695 cm$^{-1}$. MS (70 eV, EI): m/z (%) 494 (M$^+$, 3), 448 (9), 421 (37), 266 (100), 193 (38), 165 (35). Elemental analysis (%) calcd for C$_{25}$H$_{23}$BrN$_2$O$_4$: C 60.62, H 4.68, N 5.66; found: C 60.52, H 4.80, N 5.51.

anti-Ethyl 3-(3,4-dimethoxyphenyl)-2-diphenylmethyleneimino-4-nitrobutanoate (5g). According to the general procedure, a white solid was obtained. m. p. 108–109 °C. 1H NMR (200 MHz, CDCl$_3$): δ = 1.21 (t, J = 7.2 Hz, 3H), 4.12–4.17 (m, 2H), 4.25–4.30 (m, 2H), 5.11–5.14 (m, 2H), 6.67 (d, J = 6.3 Hz, 2H), 7.03 (d, J = 8.4 Hz, 2H), 7.27–7.46 (m, 8H), 7.62–7.65 (d, J = 7.5 Hz, 2H). 13C NMR (75 MHz, CDCl$_3$): δ = 14.0, 46.0, 61.7, 68.2, 75.8, 121.8, 127.2, 128.3, 128.4, 128.7, 128.8, 129.9, 131.0, 131.8, 135.1, 136.3, 138.4, 169.6, 173.1. IR: 1734, 1621, 1552, 1489, 1446, 1378, 1316, 1288, 1181, 1075, 1023, 1011, 784, 695 cm$^{-1}$. MS (70 eV, EI): m/z (%) 476 (M$^+$, 3), 403 (16), 329 (19), 266 (100), 193 (64), 165 (63). Elemental analysis (%) calcd for C$_{27}$H$_{28}$N$_2$O$_6$: C 68.05, H 5.92, N 5.88; found: C 67.95, H 6.02, N 5.83.

anti-Ethyl 2-diphenylmethyleneimino-3-(2-naphthyl)-4-nitrobutanoate (5h). According to the general procedure, a white solid was obtained. m. p. 161–162 °C. 1H NMR (300 MHz, CDCl$_3$): δ = 0.92 (t, J = 7.2 Hz, 3H), 4.01–4.12 (m, 2H), 4.15–4.29 (m, 2H), 5.04–5.08 (m, 1H), 6.17 (d, J = 4.2
anti-tert-Butyl 2-diphenylmethyleneimino-4-nitro-3-phenylbutanoate (6a). According to the general procedure, a white solid was obtained. m. p. 163–164 °C. 1H NMR (200 MHz, CDCl$_3$): $\delta = 1.35$ (s, 9H), 3.80–4.07 (m, 3H), 6.06–6.09 (d, $J = 5.0$ Hz, 1H), 6.77–6.82 (m, 2H), 7.18–7.47 (m, 11H), 7.80–7.84 (m, 2H). 13C NMR (50 MHz, CDCl$_3$): $\delta = 27.8, 59.1, 66.1, 76.9, 82.0, 101.8, 114.0, 125.4, 126.8, 127.5, 127.7, 128.4, 128.9, 129.0, 129.5, 142.7, 159.0, 170.6. IR: 1732, 1550, 1491, 1451, 1367, 1249, 1153, 739, 697 cm$^{-1}$. MS (70 eV, EI): m/z (%) 444 (M$^+$, 2), 326 (12), 299 (118), 266 (100), 238(15), 193 (46), 165 (34), 91 (25). Elemental analysis (%) calcd for C$_{27}$H$_{28}$N$_2$O$_4$: C 72.95, H 6.37, N 5.90; found: C 72.90, H 6.43, N 6.35.

anti-tert-Butyl 2-diphenylmethyleneimino-3-(4-methoxyphenyl)-4-nitrobutanoate (6b). According to the general procedure, a white solid was obtained. m. p. 155–156 °C. 1H NMR (200 MHz, CDCl$_3$): $\delta = 1.37$ (s, 9H), 3.73 (s, 3H), 3.81–4.02 (m, 3H), 6.03 (d, $J = 4.6$ Hz, 1H), 6.70 (s, 3H), 7.14–7.46 (m, 10H), 7.79 (d, $J = 7.8$ Hz, 2H). 13C NMR (50 MHz, CDCl$_3$): $\delta = 27.8, 58.2, 66.1, 77.2, 82.5, 101.5, 125.5, 126.9, 127.8, 128.0, 128.6, 128.9, 129.2, 133.7, 136.2, 141.8, 142.5, 170.3. IR: 1731, 1551, 1493, 1452, 1368, 1342, 1252, 1217, 1154, 1132, 1091, 1014, 748, 707 cm$^{-1}$. MS (70 eV, EI): m/z (%) 474 (M$^+$, 2), 377 (35), 330 (82), 238 (60), 165 (58), 57 (100). Elemental analysis (%) calcd for C$_{27}$H$_{30}$ClN$_2$O$_4$: C 70.87, H 6.37, N 5.90; found: C 70.81, H 6.30, N 5.76.

anti-tert-Butyl 3-(4-chlorophenyl)-2-diphenylmethyleneimino-4-nitrobutanoate (6c). According to the general procedure, a white solid was obtained. m. p. 193–194 °C. 1H NMR (200 MHz, CDCl$_3$): $\delta = 1.37$ (s, 9H), 3.78–4.03 (m, 3H), 6.01 (d, $J = 4.6$ Hz, 1H), 6.70 (s, 3H), 7.14–7.46 (m, 10H), 7.79 (d, $J = 7.8$ Hz, 2H). 13C NMR (50 MHz, CDCl$_3$): $\delta = 27.8, 58.2, 66.1, 77.2, 82.5, 101.5, 125.5, 126.9, 127.8, 128.0, 128.6, 128.9, 129.2, 133.7, 136.2, 141.8, 142.5, 170.3. IR: 1731, 1551, 1493, 1452, 1368, 1342, 1252, 1217, 1154, 1132, 1091, 1014, 748, 707 cm$^{-1}$. MS (70 eV, EI): m/z (%) 478 (M$^+$, 2), 377 (35), 330 (82), 238 (60), 165 (58), 57 (100). Elemental analysis (%) calcd for C$_{27}$H$_{27}$ClN$_2$O$_4$: C 67.71, H 5.68, N 5.85; found: C 67.25, H 5.53, N 5.51.

syn-tert-Butyl 2-diphenylmethyleneimino-3-(2-naphthyl)-4-nitrobutanoate (6d). According to the general procedure, a white solid was obtained. m. p. 102–104 °C. 1H NMR (300 MHz, CDCl$_3$): $\delta = 1.38$ (s, 9H), 4.29 (s, 1H), 5.21–5.29 (m, 2H), 5.35–5.40 (m, 1H), 6.23 (s, 2H), 6.91–7.98 (m, 15H). 13C NMR (75 MHz, CDCl$_3$): $\delta = 27.9, 41.0, 67.8, 75.6, 82.3, 122.2, 123.9, 124.9, 125.7, 126.6, 126.9, 127.8, 128.07, 128.16, 128.2, 128.8, 128.9, 130.7, 131.4, 132.9, 134.0, 135.1, 138.7, 169.2, 172.4. IR: 2980, 1725, 1623, 1598, 1446, 1369, 1316, 1289, 1253, 1151, 1084, 1030, 960, 841, 782, 732, 695 cm$^{-1}$. MS (70 eV, EI): m/z (%) 494 (M$^+$, 4), 393 (15), 346 (24), 294 (13), 238 (100), 193 (31), 165 (60), 57 (35). Elemental analysis (%) calcd for C$_{31}$H$_{30}$N$_2$O$_4$: C 75.28, H 6.11, N 5.66; found: C 74.93, H 6.02, N 5.66.

anti-Methyl 2-diphenylmethyleneimino-4-nitro-3-phenylbutanoate (7a). According to the general procedure, a white solid was obtained. m. p. 163–164 °C. 1H NMR (200 MHz, CDCl$_3$): $\delta = 1.35$ (s, 9H), 3.80–4.07 (m, 3H), 6.06–6.09 (d, $J = 5.0$ Hz, 1H), 6.77–6.82 (m, 2H), 7.18–7.47 (m, 11H), 7.80–7.84 (m, 2H). 13C NMR (50 MHz, CDCl$_3$): $\delta = 27.8, 59.1, 66.1, 77.2, 82.3, 101.8, 125.6, 127.0, 127.9, 128.0, 128.5, 128.7, 129.1, 137.5, 141.96, 141.98, 170.6. IR: 1734, 1558, 1549, 1449, 1366, 1195, 778, 736 cm$^{-1}$. MS (70 eV, EI): m/z (%) 466 (M$^+$, 4), 343 (44), 296 (100), 238 (41), 193 (25), 165 (44), 57 (81). Elemental analysis (%) calcd for C$_{29}$H$_{26}$N$_2$O$_4$: C 74.66, H 5.62, N 6.00; found: C 74.45, H 5.76, N 5.91.
general procedure, a white solid was obtained. m. p. 126–128 °C. \(^1H \) NMR (300 MHz, CDCl\(_3\)): \(\delta = 3.74 \) (s, 3H), 4.05 (s, 2H), 4.14 (s, 1H), 6.10 (s, 1H), 6.76 (s, 2H), 7.21–7.47 (m, 11H), 7.78 (s, 2H). \(^{13}C \) NMR (75 MHz, CDCl\(_3\)): \(\delta = 52.5, 58.4, 65.3, 76.97, 101.4, 125.3, 126.6, 127.68, 127.74, 127.8, 127.9, 128.5, 128.8, 129.1, 137.2, 141.7, 142.1, 171.7. IR: 3064, 2952, 1741, 1551, 1496, 1450, 1361, 1210, 1136, 908, 733, 698 cm\(^{-1}\). MS (70 eV, EI): m/z (%) 356 (M\(^+\)-NO\(_2\), 4), 343 (12), 296 (64), 269 (67), 252 (100), 220 (25), 193 (79), 165 (45), 91 (34). Elemental analysis (%) calcd for C\(_{24}H_22N_2O_4\): C 71.63, H 5.51, N 6.96; found: C 71.07, H 5.43, N 6.88.

anti-Methyl 2-diphenylmethyleneimino-3-(4-methoxyphenyl)-4-nitrobutanoate (7b). According to the general procedure, a white solid was obtained. m. p.128–130 °C. \(^1H \) NMR (300 MHz, CDCl\(_3\)): \(\delta = 3.73 \) (s, 3H), 3.98–4.05 (m, 3H), 6.04 (d, 1H), 6.63–6.69 (m, 4H), 7.18–7.47 (m, 8H), 7.77 (d, \(J = 7.8 \) Hz, 2H). \(^{13}C \) NMR (75 MHz, CDCl\(_3\)): \(\delta = 52.5, 55.2, 57.9, 65.4, 77.2, 101.5, 114.1, 125.3, 126.6, 127.7, 127.9, 128.6, 128.9, 129.16, 129.21, 141.8, 142.2, 159.0, 171.8. IR: 3065, 2954, 2836, 1741, 1612, 1550, 1515, 1491, 1449, 1362, 1344, 1307, 1252, 1208, 1180, 1133, 1032, 910, 831, 775, 748, 734, 710 cm\(^{-1}\). MS (70 eV, EI): m/z (%) 432 (M\(^+\), 3), 326 (19), 299 (46), 252 (100), 193 (70), 165 (44), 121 (18), 91 (34). Elemental analysis (%) calcd for C\(_{25}H_24N_2O_5\): C 69.43, H 5.59, N 6.48; found: C 69.31, H 5.53, N 6.38.

anti-Methyl 3-(4-chlorophenyl)-2-diphenylmethyleneimino-4-nitrobutanoate (7c). According to the general procedure, a white solid was obtained. m. p. 162–164 °C. \(^1H \) NMR (300 MHz, CDCl\(_3\)): \(\delta = 3.74 \) (s, 3H), 4.02–4.10 (m, 3H), 6.02 (d, \(J = 3.6 \) Hz, 1H), 6.63 (d, \(J = 7.8 \) Hz, 2H), 7.14–7.47 (m, 10H), 7.76 (d, \(J = 7.5 \) Hz, 2H). \(^{13}C \) NMR (75 MHz, CDCl\(_3\)): \(\delta = 52.6, 57.6, 65.3, 77.4, 101.2, 125.3, 126.6, 127.8, 128.0, 128.6, 129.0, 129.1, 133.8, 135.8, 141.5, 141.9, 171.5. IR: 3067, 2954, 1742, 1551, 1494, 1449, 1362, 1343, 1210, 1136, 1093, 1015, 908, 826, 771, 736, 708 cm\(^{-1}\). MS (70 eV, EI): m/z (%) 377 (M\(^+\)-NO\(_2\)CH, 7), 330 (66), 252 (100), 193 (77), 165 (45), 91 (22). Elemental analysis (%) calcd for C\(_{24}H_21ClN_2O_4\): C 65.98, H 4.84, N 6.41; found: C 65.90, H 4.84, N .29.

References: