Supporting Information
© Georg Thieme Verlag KG Stuttgart · New York 2009
Supporting Information for

One-pot Synthesis of Functionalized Benzimidazoles and 1H-Pyrimidines via Cascade Reactions of o-Aminoanilines or Naphthalene-1,8-diamine with Alkynes and p-Tolylsulfonyl Azide

Jin Shea, Zheng Jianga and Yanguang Wanga,b,*

aDepartment of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China

bState Key Laboratory of Applied Organic Chemistry Lanzhou University, Lanzhou 730000, China

E-mail: orgwyg@zju.edu.cn

Contents

General Considerations \hspace{1cm} S2

General Procedure for the Synthesis of Benzimidazoles 5 \hspace{1cm} S2

General Procedure for the Synthesis of Pyrimidines 7 \hspace{1cm} S2-S3

Characterization Data \hspace{1cm} S3-S12

Copies of NMR Spectra \hspace{1cm} S13-S64
General Considerations

Infrared spectrums were obtained on a FTIR spectrometer. NMR specrums were recorded for 1H NMR at 400 MHz or 500 MHz, for 13C NMR at 100 MHz or 125 MHz. Chemical shifts are reported relative to residue peaks of d$_6$-DMSO (2.50 ppm for 1H and 40.0 for 13C). The following abbreviations are used to describe peak patterns where appropriate: s = single, d = double, t = triplet, q = quartet, m = multiplet, br = broad. Coupling constants are reported in Hertz (Hz). Low-resolution MS and HRMS were obtained using ESI ionization. Melting points were measured with micro melting point apparatus.

General Procedure for the Synthesis of Benzimidazoles 5.

\[
\begin{align*}
\text{1. CuI, Et}_3\text{N} \\
\text{2. H}^+ \\
\text{TsN}_3 & \quad \text{1} \quad \text{2} \quad \text{3} \\
\text{R}^1 & \quad \text{N} & \quad \text{NHR}^2 \\
\text{R}^2 & \quad \text{R}^3 \\
\rightarrow \\
\text{R}^1 & \quad \text{N} & \quad \text{N} \\
\text{R}^2 & \quad \text{R}^3 \\
\end{align*}
\]

To a solution of p-tolylsulfonyl azide (2.2 mmol), terminal alkynes (2.1 mmol), ortho-aminooanilines (2 mmol), CuI (0.2 mmol) in MeCN (10 mL) in Schlenk tube was added dropwise TEA (2 mmol). The reaction was stirred at room temperature under N$_2$ for 6 h. Then, conc. H$_2$SO$_4$ (98 %, 0.4 mL) was added to the reaction mixture, the resulting solution was heated under reflux for 4 h. After cooled to room temperature, the solution was poured into water (20 mL), neutralized with K$_2$CO$_3$. MeCN was removed in vacuum, and then the resulting solution was extracted with ethyl acetate (5 mL×3). The organic layer was combined, dried over anhydrous sodium sulfate. The solvent was removed in vacuum, and the residue was purified by column chromatography on silica gel with petroleum ether-ethyl acetate (from 2:1 to 1:2).

\[
\begin{align*}
\text{1. CuI, Et}_3\text{N} \\
\text{2. H}^+ \\
\text{TsN}_3 & \quad \text{1} \quad \text{2} \quad \text{3} \\
\text{NH}_2 & \quad \text{NH}_2 \\
\text{R} & \quad \text{R} \\
\rightarrow \\
\text{R} & \quad \text{N} & \quad \text{N} \\
\end{align*}
\]

To a solution of p-tolylsulfonyl azide (2.2 mmol), terminal alkynes (2.1 mmol), naphthalene-1,8-diamine (2 mmol), CuI (0.2 mmol) in MeCN (10 mL) in Schlenk tube was added dropwise TEA (2 mmol). The reaction was stirred at room temperature under N$_2$ for 6 h. Then, conc. H$_2$SO$_4$ (98 %, 0.4 mL) was added to the reaction mixture, the resulting solution was heated under reflux for 4 h. After cooled to room temperature, the solution was poured into water (20 mL), neutralized with
K₂CO₃. The organic solvent was removed in vacuum, and then the resulting solution was extracted with ethyl acetate (5 mL×3). The organic layer was combined, dried over anhydrous sodium sulfate. The solvent was removed in vacuum, and the residue was purified by column chromatography on silica gel with petroleum ether-ethyl acetate (3:1).

Characterization Data

N-(2-aminophenyl)-2-phenyl-N'-tosylacetimid amide (4a)

![Structure of 4a and 4a']

(4a/4a' ≈ 10/1)

Yellow syrup liquid. ¹H NMR (500 MHz, d⁶-DMSO): δ 2.31 (2.7H, s), 2.38 (0.27H, s), 3.66 (0.16H, s), 4.31 (1.8H, s), 4.93 (2.0H, br), 6.46 (0.09H, t, J = 7.0 Hz), 6.55(0.92H, t, J = 7.5 Hz), 6.67(0.10H, d, J = 7.5 Hz), 6.76 (0.98H, d, J = 7.5 Hz), 6.88-6.89 (0.19H, m), 6.97-7.00 (1.9H, m), 7.04-7.14 (0.47H, m), 7.21 (1.9H, d, J = 7.5 Hz), 7.25-7.28 (0.93H, m), 7.35 (2.0 H, t, J = 7.2 Hz), 7.43 (1.9H, d, J = 7.2 Hz), 7.51 (1.8H, d, J = 8.0 Hz), 7.72-7.70 (0.36H, m), 9.66 (0.09H, brs), 9.87 (0.91H, brs); ¹³C NMR (125 MHz, d⁶-DMSO) δ 21.37, 38.92, 116.47, 116.54, 122.50, 126.12, 126.66, 127.16, 127.36, 128.13, 128.52, 128.93, 129.18, 129.53, 129.71, 129.80, 136.21, 141.46, 142.06, 143.72, 165.72; IR (KBr, cm⁻¹) 3362, 3266, 3062, 3031, 2922, 1626, 1571, 1533, 1497, 1459, 1398, 1273, 1142, 1089, 1031, 1017, 984, 814, 751, 697, 669, 591, 555; MS (ESI) m/z: 378.0 ([M-H]⁻); HRMS (ESI) m/z calcd for C₂₁H₂₂N₃O₂S ([M+H]+), 380.1427; found 380.1430.

2-Benzyl-1H-benzo[d]imidazole (5a)

![Structure of 5a]

White solid. M.p.187-188 °C. ¹H NMR (400 MHz, d⁶-DMSO) δ 4.18 (2H, s), 7.11-7.13 (2H, m), 7.20-7.24 (1H, m), 7.29-7.35 (4H, m), 7.48 (2H, brs), 12.32 (1H, brs); ¹³C NMR (100 MHz, d⁶-DMSO) δ 35.36, 121.68, 126.90, 128.86, 129.15,
138.06, 153.92; IR (KBr, cm⁻¹) 3432, 3083, 3050, 2837, 2738, 2687, 2637, 1624, 1588, 1536, 1493, 1457, 1447, 1427, 1323, 1271, 1224, 1196, 1148, 1024, 1013, 1001, 926, 890, 848, 768, 749, 723, 695, 670, 619, 565; MS (ESI) m/z: 209.0 ([M+H]+); HRMS (ESI) m/z calcd for C₁₄H₁₃N₂ ([M+H]+), 209.1073; found 209.1073.

2-(4-Methoxybenzyl)-1H-benzo[d]imidazole (5b)

Slightly yellow solid. M.p. 165-166 °C. ¹H NMR (400 MHz, d₆-DMSO) δ 3.71 (3H, s), 4.10 (2H, s), 6.88 (2H, d, J = 8.8 Hz), 7.10-7.13 (2H, m), 7.25 (2H, d, J = 8.4 Hz), 7.47 (2H, brs), 12.24 (1H, brs); ¹³C NMR (125 MHz, d₆-DMSO) δ 34.48, 55.43, 114.30, 114.85, 121.55, 129.91, 130.13, 139.22, 154.28, 158.41; IR (KBr, cm⁻¹) 3436, 2999, 2937, 2901, 2841, 2759, 1611, 1584, 1537, 1512, 1456, 1442, 1412, 1326, 1305, 1271, 1244, 1184, 1105, 1029, 1000, 922, 838, 814, 769, 752, 729, 715, 573, 511; MS (ESI) m/z: 239.0 ([M+H]+); HRMS (ESI) m/z calcd for C₁₅H₁₅N₂O ([M+H]+), 239.1179; found 239.1179.

2-(4-tert-Butylbenzyl)-1H-benzo[d]imidazole (5c)

Slightly yellow solid. M.p. 169-171 °C. ¹H NMR (400 MHz, d₆-DMSO) δ 1.24 (9H, s), 4.13 (2H, s), 7.09-7.13 (2H, m), 7.25 (2H, d, J = 8.0 Hz), 7.32 (2H, d, J = 8.0 Hz), 7.46-7.48 (2H, m), 12.27 (1H, brs); ¹³C NMR (125 MHz, d₆-DMSO) δ 31.48, 34.42, 34.86, 34.86, 114.84, 121.54, 125.52, 128.71, 134.96, 139.27, 149.20, 154.04; IR (KBr, cm⁻¹) 3399, 3057, 2964, 2905, 2866, 2775, 1624, 1593, 1540, 1517, 1456, 1434, 1422, 1363, 1310, 1271, 1222, 1203, 1171, 1150, 1109, 1024, 1000, 830, 808, 767, 745, 735, 715,
567; MS (ESI) m/z: 265.0 ([M+H]+); HRMS (ESI) m/z calcd for C_{18}H_{21}N_{2} ([M+H]^+), 265.1699; found 265.1700.

2-(2-Chlorobenzyl)-1H-benzo[d]imidazole (5d)

White solid. M.p. 215-217 °C. \(^1\)H NMR (400 MHz, d\(_6\)-DMSO) δ 4.31 (2H, s), 7.11-7.13 (2H, m), 7.30-7.32 (2H, m), 7.37-7.40 (1H, m), 7.45-7.49 (3H, m), 12.32 (1H, brs); \(^{13}\)C NMR (125 MHz, d\(_6\)-DMSO) δ 33.34, 115.13, 121.93, 127.88, 129.18, 129.86, 132.02, 133.88, 135.78, 152.76; IR (KBr, cm\(^{-1}\)) 3415, 3089, 3049, 3002, 2950, 2911, 2853, 2806, 2756, 1623, 1540, 1483, 1472, 1457, 1444, 1419, 1326, 1271, 1218, 1196, 1052, 1031, 1003, 931, 850, 751, 739, 684, 610; MS (ESI) m/z: 243.3 ([M+H]^+); HRMS (ESI) m/z calcd for C\(_{14}\)H\(_{12}\)ClN\(_{2}\) ([M+H]^+), 243.0684; found 243.0685.

2-(3-Chlorobenzyl)-1H-benzo[d]imidazole (5e)

White solid. M.p. 182-183 °C. \(^1\)H NMR (400 MHz, d\(_6\)-DMSO) δ 4.20 (2H, s), 7.11-7.15 (2H, m), 7.28-7.36 (3H, m), 7.43 (1H, s), 7.48-7.51 (2H, m), 12.24 (1H, brs); \(^{13}\)C NMR (125 MHz, d\(_6\)-DMSO) δ 34.97, 115.24, 122.18, 127.20, 128.12, 130.93, 133.70, 140.54, 153.54; IR (KBr, cm\(^{-1}\)) 3431, 3055, 3026, 2995, 2935, 2840, 2742, 2687, 2637, 2523, 1617, 1598, 1577, 1487, 1477, 1454, 1445, 1385, 1317, 1299, 1273, 1220, 1203, 1166, 1150, 1093, 1080, 1027, 1002, 886, 864, 794, 769, 746, 685, 661, 616, 535; MS (ESI) m/z: 243.3 ([M+H]^+); HRMS (ESI) m/z calcd for C\(_{14}\)H\(_{12}\)ClN\(_{2}\) ([M+H]^+), 243.0684; found 243.0683.

2-(4-Chlorobenzyl)-1H-benzo[d]imidazole (5f)
White solid. M.p. 189-191 °C. \(^1\)H NMR (400 MHz, d\(^6\)-DMSO) \(\delta\) 4.18 (2H, s), 7.10-7.14 (2H, m), 7.34-7.39 (4H, m), 7.48 (1H, brs), 12.33 (1H, brs); \(^{13}\)C NMR (100 MHz, d\(^6\)-DMSO) \(\delta\) 34.56, 121.71, 128.76, 131.04, 131.64, 136.98, 153.47; IR (KBr, cm\(^{-1}\)) 3414, 3088, 3055, 2838, 2733, 2687, 2631, 1625, 1591, 1539, 1491, 1456, 1440, 1425, 1388, 1322, 1271, 1225, 1196, 1178, 1151, 1109, 1095, 1026, 1016, 1002, 962, 924, 890, 837, 819, 801, 766, 755, 745, 683, 617, 539; MS (ESI) m/z: 243.1 ([M+H]\(^+\)); HRMS (ESI) m/z calcd for C\(_{14}\)H\(_{12}\)ClN\(_2\) ([M+H]\(^+\)), 243.0684; found 243.0685.

2-Pentyl-1\(^H\)-benzo[d]imidazole (5g)

![Structure of 2-Pentyl-1H-benzo[d]imidazole (5g)](image)

White solid. M.p. 162-163 °C. \(^1\)H NMR (400 MHz, d\(^6\)-DMSO) \(\delta\) 0.85 (3H, t, \(J = 6.2\) Hz), 1.28-1.31 (4H, m), 1.72-1.80 (2H, m), 2.79 (2H, t, \(J = 7.4\) Hz), 7.07-7.12 (2H, m), 7.45-7.47 (2H, m), 12.21 (1H, brs); \(^{13}\)C NMR (125 MHz, d\(^6\)-DMSO) \(\delta\) 14.16, 22.19, 27.64, 28.90, 31.28, 114.77, 121.41, 139.18, 155.59; IR (KBr, cm\(^{-1}\)) 3432, 3050, 2952, 2867, 2733, 2673, 1623, 1590, 1538, 1482, 1456, 1436, 1420, 1379, 1351, 1315, 1272, 1234, 1224, 1200, 1154, 1109, 1021, 1000, 966, 929, 900, 842, 769, 751, 742, 737, 617; MS (ESI) m/z: 189.0 ([M+H]\(^+\)); HRMS (ESI) m/z calcd for C\(_{14}\)H\(_{17}\)N\(_2\) ([M+H]\(^+\)), 189.1386; found 189.1377.

2-Hexyl-1\(^H\)-benzo[d]imidazole (5h)

![Structure of 2-Hexyl-1H-benzo[d]imidazole (5h)](image)

White solid. M.p. 136-138 °C. \(^1\)H NMR (400 MHz, d\(^6\)-DMSO) \(\delta\) 0.84 (3H, t, \(J = 7.0\) Hz), 1.27-1.33 (6H, m), 1.71-1.78 (2H, m), 2.79 (2H, t, \(J = 7.8\) Hz), 7.07-7.11 (2H,
m), 7.45 (2H, m), 12.19 (1H, brs); 13C NMR (100 MHz, d$_6$-DMSO) δ 14.34, 22.43, 27.99, 28.80, 28.98, 31.42, 121.42, 155.57; IR (KBr, cm$^{-1}$) 3434, 3051, 2952, 2928, 2856, 2734, 2685, 1623, 1590, 1539, 1482, 1455, 1422, 1375, 1317, 1274, 1259, 1225, 1201, 1182, 1157, 1109, 1030, 1002, 933, 768, 751, 739, 617; MS (ESI) m/z: 203.2 ([M+H]$^+$); HRMS (ESI) m/z calcd for C$_{13}$H$_{19}$N$_2$ ([M+H]$^+$), 203.1543; found 203.1533.

2-Heptyl-1H-benzo[d]imidazole (5i)

White solid. M.p. 143-145 °C. 1H NMR (400 MHz, d$_6$-DMSO) δ 0.84 (3H, t, J = 6.4 Hz), 1.24- 1.30 (8H, m), 1.72-1.77 (2H, m), 2.79 (2H, t, J = 7.4 Hz), 7.07-7.11 (2H, m), 7.45 (2H, brs), 12.19 (1H, brs); 13C NMR (100 MHz, d$_6$-DMSO) δ14.36, 22.52, 28.03, 28.86, 28.97, 29.09, 31.60, 121.36, 155.56; IR (KBr, cm$^{-1}$) 3431, 3086, 3053, 2955, 2927, 2855, 2739, 2679, 1623, 1590, 1541, 1482, 1455, 1423, 1377, 1319, 1273, 1223, 1200, 1109, 1029, 1002, 928, 766, 751, 737, 617; MS (ESI) m/z: 217.7 ([M+H]$^+$); HRMS (ESI) m/z calcd for C$_{14}$H$_{21}$N$_2$ ([M+H]$^+$), 217.1699; found 217.1696.

2-Octyl-1H-benzo[d]imidazole (5j)

White solid. M.p. 140-142 °C. 1H NMR (400 MHz, d$_6$-DMSO) δ0.83 (3H, t, J = 7.0 Hz), 1.22- 1.30 (10H, m), 1.71-1.79 (2H, m), 2.78 (2H, t, J = 7.4 Hz), 7.07-7.11 (2H, m), 7.44-7.46 (2H, m), 12.21 (1H, brs); 13C NMR (100 MHz, d$_6$-DMSO) δ14.36, 22.53, 28.04, 28.98, 29.04, 29.13, 29.17, 31.71, 121.39, 155.55; IR (KBr, cm$^{-1}$) 3434, 3051, 2926, 2855, 2733, 2667, 1624, 1590, 1538, 1481, 1449, 1435, 1419, 1377, 1315, 1272, 1224, 1197, 1109, 1023, 1001, 929, 911, 841, 769, 752, 741, 617; MS (ESI) m/z: 231.5 ([M+H]$^+$); HRMS (ESI) m/z calcd for C$_{15}$H$_{23}$N$_2$ ([M+H]$^+$), 231.1845; found 231.1845.
2-Nonyl-1H-benzo[d]imidazole (5k)

White solid. M.p. 126-128 °C. 1H NMR (400 MHz, d$_6$-DMSO) δ 0.83 (3H, t, J = 6.8 Hz), 1.22- 1.28 (12H, m), 1.73-1.76 (2H, m), 2.78 (2H, t, J = 7.6 Hz), 7.01-7.11 (2H, m), 7.44-7.46 (2H, m), 12.19 (1H, brs); 13C NMR (100 MHz, d$_6$-DMSO) δ 14.37, 22.54, 28.02, 28.97, 29.14, 29.21, 29.34, 31.72, 121.40, 155.57; IR (KBr, cm$^{-1}$) 3433, 3088, 3052, 2925, 2770, 1622, 1591, 1542, 1482, 1454, 1421, 1321, 1218, 1198, 1111, 1028, 1004, 928, 902, 752, 739, 617; MS (ESI) m/z: 245.2 ([M+H]$^+$); HRMS (ESI) m/z calcd for C$_{16}$H$_{25}$N$_2$ ([M+H]$^+$), 245.2012; found 245.2002.

2-Methyl-1H-benzo[d]imidazole (5l)

White solid. M.p. 176-177 °C. 1H NMR (400 MHz, d$_6$-DMSO) δ 0.85 (3H, t, J = 6.2 Hz), 1.28- 1.31 (4H, m), 1.72-1.80 (2H, m), 2.79 (2H, t, J = 7.4 Hz), 7.07-7.12 (2H, m), 7.45-7.47 (2H, m), 12.21 (1H, brs); 13C NMR (100 MHz, d$_6$-DMSO) δ 14.26, 22.29, 27.72, 28.94, 31.32, 121.42, 155.58; IR (KBr, cm$^{-1}$) 3448, 3098, 3063, 2996, 2917, 2876, 2848, 2788, 2679, 1622, 1592, 1557, 1488, 1464, 1450, 1418, 1387, 1361, 1272, 1219, 1044, 1028, 1004, 924, 897, 836, 766, 737, 675, 625, 618; MS (ESI) m/z: 133.0 ([M+H]$^+$); HRMS (ESI) m/z calcd for C$_8$H$_9$N$_2$ ([M+H]$^+$), 133.0760; found 133.0759.

2-(4-Chlorobenzyl)-5,6-dimethyl-1H-benzo[d]imidazole (5m)

Slightly yellow solid. M.p. 199-201 °C. 1H NMR (400 MHz, d$_6$-DMSO) δ 2.26 (6H, s),
4.13 (2H, s), 7.24 (1H, s), 7.31-7.37 (4H, m), 12.08 (1H, brs); \(^{13}\)C NMR (125 MHz, d\(^6\)-DMSO) \(\delta\) 20.41, 34.69, 115.36, 128.94, 130.38, 131.13, 131.85, 137.29, 152.77; IR (KBr, cm\(^{-1}\)) 3430, 3134, 3098, 3050, 2967, 2938, 2880, 1630, 1585, 1542, 1491, 1466, 1441, 1418, 1406, 1385, 1306, 1243, 1188, 1172, 1165, 1091, 1026, 1017, 999, 917, 872, 853, 804, 694; MS (ESI) m/z: 271.6 ([M+H]\(^+\)); HRMS (ESI) m/z calcd for C\(_{16}\)H\(_{16}\)ClN\(_2\) ([M+H]\(^+\)), 271.0997; found 271.0995.

2-(4-Chlorobenzyl)-5,6-dichloro-1\(^{H}\)-benzo[d]imidazole (5n)

![Chemical structure](attachment:image)

Pink solid. M.p. 214-215 °C. \(^1\)H NMR (400 MHz, d\(^6\)-DMSO) \(\delta\) 4.19 (2H, s), 7.33-7.39 (4H, m), 7.69 (1H, s), 7.80 (1H, s), 12.63 (1H, brs); \(^{13}\)C NMR (100 MHz, d\(^6\)-DMSO) \(\delta\) 34.45, 122.98, 129.90, 124.04, 124.48, 128.89, 131.20, 131.85, 134.36, 136.42, 143.48, 156.57; IR (KBr, cm\(^{-1}\)) 3420, 3093, 3006, 2939, 2848, 2775, 2679, 1627, 1578, 1534, 1492, 1446, 1400, 1346, 1295, 1225, 1169, 1097, 1017, 971, 913, 870, 847, 803, 762, 690, 655, 542, 503; MS (ESI) m/z: 311.0 ([M+H]\(^+\)); HRMS (ESI) m/z calcd for C\(_{16}\)H\(_{10}\)Cl\(_3\)N\(_2\) ([M+H]\(^+\)), 310.9904; found 310.9908.

2-(2-Chlorobenzyl)-1-methyl-1\(^{H}\)-benzo[d]imidazole (5o)

![Chemical structure](attachment:image)

Slightly yellow solid. M.p. 119-121 °C. \(^1\)H NMR (400 MHz, d\(^6\)-DMSO) \(\delta\) 3.76 (3H, s), 4.37 (2H, s), 7.13-7.25 (3H, m), 7.27-7.31 (2H, m), 7.47-7.55 (3H, m); \(^{13}\)C NMR (100 MHz, d\(^6\)-DMSO) \(\delta\) 30.14, 31.35, 110.31, 118.93, 121.72, 122.12, 127.77, 129.01, 129.71, 131.64, 133.62, 135.25, 136.22, 142.67, 153.02; IR (KBr, cm\(^{-1}\)) 3448, 3056, 2914, 1616, 1589, 1572, 1517, 1473, 1437, 1421, 1396, 1331, 1321, 1302, 1286, 1266, 1238, 1209, 1160, 1149, 1123, 1094, 1054, 1038, 1005, 926, 871, 845, 808, 768, 753, 743, 729, 698, 691, 660, 574, 541, 523; MS (ESI) m/z: 257.1 ([M+H]\(^+\)); HRMS (ESI) m/z calcd for C\(_{17}\)H\(_{15}\)Cl\(_2\)N\(_2\) ([M+H]\(^+\)), 257.1006; found 257.1008.
m/z calcd for C$_{15}$H$_{14}$ClN$_2$ ([M+H]$^+$), 257.0840; found 257.0843.

2-(3-Chlorobenzyl)-1-methyl-1H-benzo[d]imidazole (5p)

Slightly yellow solid. M.p. 80-82 °C. 1H NMR (400 MHz, d$_6$-DMSO) δ 3.71 (3H, s), 4.32 (2H, s), 7.14-7.38 (6H, m), 7.47 (1H, d, J = 7.6 Hz), 7.59 (1H, d, J = 8.0 Hz); 13C NMR (100 MHz, d$_6$-DMSO) δ 30.19, 32.84, 110.35, 118.98, 121.79, 122.18, 127.02, 128.00, 129.09, 130.78, 133.51, 136.26, 139.84, 142.65, 153.54; IR (KBr, cm$^{-1}$) 3448, 3059, 2942, 1917, 1876, 1797, 1758, 1616, 1597, 1573, 1498, 1471, 1438, 1400, 1333, 1287, 1236, 1190, 1169, 1122, 1090, 1080, 1007, 921, 890, 860, 850, 794, 762, 744, 726, 681, 633, 589, 577, 569, 535, 526; MS (ESI) m/z: 257.2 ([M+H]$^+$); HRMS (ESI) m/z calcd for C$_{15}$H$_{14}$ClN$_2$ ([M+H]$^+$), 257.0840; found 257.0843.

2-(4-Chlorobenzyl)-1-methyl-1H-benzo[d]imidazole (5q)

Slightly yellow solid. M.p. 117-119 °C. 1H NMR (400 MHz, d$_6$-DMSO) δ 3.69 (3H, s), 4.30 (2H, s), 7.14-7.22 (2H, m), 7.30 (2H, d, J = 8.4 Hz), 7.37 (2H, d, J = 8.4 Hz), 7.47 (1H, d, J = 7.6 Hz), 7.57 (1H, d, J = 6.8 Hz); 13C NMR (100 MHz, d$_6$-DMSO) δ 30.18, 32.66, 110.31, 118.94, 121.76, 122.14, 128.90, 131.06, 131.68, 136.30, 136.33, 142.64, 153.74; IR (KBr, cm$^{-1}$) 3447, 3041, 2940, 1786, 1614, 1601, 1509, 1492, 1480, 1469, 1442, 1421, 1412, 1402, 1334, 1316, 1302, 1285, 1274, 1237, 1208, 1196, 1178, 1151, 1126, 1094, 1080, 1016, 1007, 972, 945, 922, 911, 890, 842, 804, 766, 749, 710, 679, 670, 559, 513; MS (ESI) m/z: 257.2 ([M+H]$^+$); HRMS (ESI) m/z calcd for C$_{15}$H$_{14}$ClN$_2$ ([M+H]$^+$), 257.0840; found 257.0842.
2-(3-Chlorobenzyl)-1H-Pyrimidine (7a)

Yellow solid. M.p. 171-173 °C. 1H NMR (400 MHz, d$_6$-DMSO) δ 3.59 (2H, s), 6.34-6.50 (2H, br), 6.97-7.09 (4H, m), 7.32-7.39 (3H, m), 7.46 (1H, s), 10.64 (1H, brs); 13C NMR (125 MHz, d$_6$-DMSO) δ 40.95, 118.82, 121.83, 127.21, 127.98, 128.85, 129.13, 130.76, 133.48, 135.56, 139.73, 156.03; IR (KBr, cm$^{-1}$) 3404, 3047, 2813, 1639, 1609, 1597, 1542, 1479, 1445, 1433, 1416, 1369, 1341, 1300, 1241, 1174, 1094, 1078, 1052, 1032, 991, 866, 824, 786, 770, 759, 709, 682, 632; MS (ESI) m/z: 291.1 ([M-H]$^-$); HRMS (ESI) m/z calcd for C$_{18}$H$_{14}$ClN$_2$ ([M+H]$^+$), 293.0840; found 293.0842.

2-(4-Chlorobenzyl)-1H-Pyrimidine (7b)

Yellow solid. M.p. 183-185 °C. 1H NMR (400 MHz, d$_6$-DMSO) δ 3.57 (2H, s), 6.30-6.53 (2H, br), 6.98 (2H, d, J = 8.0 Hz), 7.09 (2H, br), 7.38-7.43 (4H, m), 10.64 (1H, brs); 13C NMR (125 MHz, d$_6$-DMSO) δ 40.80, 108.42, 119.08, 121.94, 128.75, 129.00, 131.22, 132.16, 135.68, 136.27, 156.58; IR (KBr, cm$^{-1}$) 3398, 3047, 2927, 2823, 1918, 1635, 1594, 1535, 1491, 1476, 1442, 1425, 1413, 1373, 1342, 1309, 1291, 1238, 1182, 1165, 1092, 1051, 1030, 1017, 988, 825, 805, 793, 765, 713, 692, 616, 512; MS (ESI) m/z: 291.1 ([M-H]$^-$); HRMS (ESI) m/z calcd for C$_{18}$H$_{14}$ClN$_2$ ([M+H]$^+$), 293.0840; found 293.0829.
2-pentyl-1H-Pyrimidine (7c)

Yellow solid. M.p. 136-138 °C. 1H NMR (400 MHz, d$_6$-DMSO) δ 0.87 (3H, t, $J = 7.0$ Hz), 1.29-1.33 (4H, m), 1.62-1.66 (2H, m), 2.23 (2H, m, $J = 7.6$ Hz), 6.40 (2H, br), 6.95 (2H, d), 7.06-7.10 (2H, m), 10.42 (1H, brs); 13C NMR (125 MHz, d$_6$-DMSO) δ 14.15, 22.20, 26.55, 31.20, 35.02, 118.19, 121.80, 128.62, 135.49, 157.76; IR (KBr, cm$^{-1}$) 3410, 3049, 2955, 2928, 2868, 1910, 1639, 1605, 1540, 1477, 1442, 1415, 1373, 1340, 1290, 1241, 1178, 1163, 1092, 1055, 1030, 825, 768, 623, 592; MS (ESI) m/z: 239.2 ([M+H]$^+$); HRMS (ESI) m/z calcd for C$_{16}$H$_{19}$N$_2$ ([M+H]$^+$), 239.1543; found 239.1532.
Copies of NMR Spectra
\[4a/4a' \sim 10/1 \]

in \(d^2\text{-DMSO+D}_2\text{O} \)
$4a/4a' \sim 10/1$

in d^6-DMSO
4a/4a' ~ 10/1
in d6-DMSO
2-benzyl 1H benzo[d]imidazole
2-(4-methoxybenzyl)-1H-benzo[d]imidazole
2-(4-tert-butylibenzyl)-1-\(\beta\)-benzo[\(\beta\)]imidazole
2-(2-chlorobenzyl)-1H benzimidazole
2-(3-chlorobenzyl)-1H-benzo[d]imidazole
2-(3-chlorobenzyl)-1H-benzo[d]imidazole
2-(4-chlorobenzyl)-1-Me-benzo[d]imidazole
2-(4-Chlorobenzyl) 1H-benzo[d]imidazole
2-pentyl-1H-benzo[d]imidazole
2-hexyl-1H-benzod[1]imidazole
2-heptyl-1H-benzo[d]imidazole
2-heptyl-1H-benzo[d]imidazole
2-octyl-1H-benzo[d]imidazole
2-ethyl-1H benz[d]imidazole
2-methyl-1H-benzo[d]imidazole
2-methyl-1H-benzo[d]imidazole
2-(4-chlorobenzyl)-5,6-dimethyl-1H-benzodimidazole
5,6-dichloro-2-(4-chlorobenzyl)-1H-benzo[d]imidazole
2-(2-chlorobenzyl)-1-methyl-1H-benz[de]imidazole
2-(3-chlorobenzyl)-1-methyl-1H-benzo[d]imidazole
2-(3-chlorobenzyl)-1-methyl-1H-henzo[cf]imidazole
2-(4-chlorobenzyl)-1-methyl-1H-benzo[d]imidazole
2-(4-chlorobenzyl)-1-methyl-1H-benzimidazole
2-pentyl-1H-perimidine