Supporting Information
© Georg Thieme Verlag KG Stuttgart · New York 2009
Experimental Section

General

All manipulations were carried out under an argon atmosphere in dried and degassed solvents. All solvents were dried and degassed by standard methods and all aldehydes, dimethylzinc and diethylzinc were commercially available. Melting points were determined using a standard melting point apparatus and are uncorrected. The reactions were monitored by thin layer chromatography (TLC). NMR spectra were measured in CDCl₃ on a 400 NMR spectrometer (400 MHz) with TMS as an internal reference. Optical rotations were measured with a SEPA-200 high sensitive polarimeter. Enantiomeric excess (ee) determination was carried out using a chiral OD-H column. Solvent, 80:20 hexane/isopropanol; Flow rate 1 mL.min⁻¹; 254 nm UV Detection. High resolution mass spectra (HRMS) were measured with EI.

Characterization of the corresponding chiral products:

Methyl 4-(4-bromophenyl)-4-hydroxybut-2-ynoate: 57% yield. 83% ee determined by HPLC analysis (Chiralcel AD-H column, IPA : hexane = 10 : 90). Retention time: $t_{\text{minor}} = 9.08$ min, $t_{\text{major}} = 10.58$ min. 1H NMR (400 MHz, CDCl₃) δ: 2.76 (br, 1H), 3.80 (s, 3H), 5.54 (s, 1H), 7.39 (d, $J = 8.4$ Hz, 2H), 7.53 (d, $J = 8.4$ Hz, 2H); 13C NMR (100 MHz, CDCl₃) δ: 53.5, 63.9, 78.1, 86.6, 123.4, 128.8, 132.4, 137.9, 154.2.

Methyl 4-(4-chlorophenyl)-4-hydroxybut-2-ynoate: 74% yield. 82% ee determined by HPLC analysis (Chiralcel AD-H column, IPA : hexane = 10 : 90). Retention time: $t_{\text{minor}} = 8.55$ min, $t_{\text{major}} = 9.74$ min. 1H NMR (400 MHz, CDCl₃) δ: 2.69 (d, $J = 5.6$ Hz, 1H), 3.80 (s, 3H), 5.56 (d, $J = 5.6$ Hz, 1H), 7.37 (d, $J = 8.4$ Hz, 2H), 7.46 (d, $J = 8.4$ Hz, 2H); 13C NMR (100 MHz, CDCl₃) δ: 53.5, 63.8, 78.0, 86.7, 128.5, 129.4, 135.2, 137.4, 154.2.
Methyl 4-hydroxy-4-p-tolylbut-2-ynoate: 61% yield. 82% ee determined by HPLC analysis (Chiralcel AD-H column, IPA : hexane = 10 : 90). Retention time: $t_{\text{minor}} = 9.24 \text{ min}$, $t_{\text{major}} = 10.55 \text{ min}$. 1H NMR (400 MHz, CDCl$_3$) δ: 2.36 (s, 3H), 2.54 (d, $J = 5.2 \text{ Hz}$, 1H), 3.79 (s, 3H), 5.53 (d, $J = 3.6 \text{ Hz}$, 1H), 7.20 (d, $J = 8.0 \text{ Hz}$, 2H), 7.40 (d, $J = 8.0 \text{ Hz}$, 2H); 13CNMR (100 MHz, CDCl$_3$) δ: 21.6, 53.3, 64.4, 77.7, 87.5, 127.1, 129.9, 136.1, 139.2, 154.4.

Methyl 4-(2-chlorophenyl)-4-hydroxybut-2-ynoate: 75% yield. 81% ee determined by HPLC analysis (Chiralcel OD-H column, IPA : hexane = 10 : 90). Retention time: $t_{\text{minor}} = 8.01 \text{ min}$, $t_{\text{major}} = 8.77 \text{ min}$. 1H NMR (400 MHz, CDCl$_3$) δ: 2.91 (d, $J = 5.6 \text{ Hz}$, 1H), 3.79 (s, 3H), 5.93 (d, $J = 5.6 \text{ Hz}$, 1H), 7.27–7.36 (m, 2H), 7.39–7.41 (m, 1H), 7.69–7.71 (m, 1H); 13CNMR (100 MHz, CDCl$_3$) δ: 53.4, 61.7, 77.4, 86.3, 127.8, 128.7, 130.2, 130.5, 132.9, 136.4, 154.3.

Methyl 4-(4-fluorophenyl)-4-hydroxybut-2-ynoate: 66% yield. 79% ee determined by HPLC analysis (Chiralcel AD-H column, IPA : hexane = 10 : 90). Retention time: $t_{\text{minor}} = 8.29 \text{ min}$, $t_{\text{major}} = 9.09 \text{ min}$. 1H NMR (400 MHz, CDCl$_3$) δ: 2.71 (d, $J = 5.2 \text{ Hz}$, 1H), 3.80 (s, 3H), 5.56 (d, $J = 3.6 \text{ Hz}$, 1H), 7.08 (t, $J = 8.8 \text{ Hz}$, 2H), 7.48-7.51 (m, 3H); 13C NMR (100 MHz, CDCl$_3$) δ: 53.4, 63.9, 78.1, 86.8, 116.1–116.3 (d, $J = 21.7 \text{ Hz}$), 129.0–129.1 (d, $J = 8.4 \text{ Hz}$), 134.8–134.9 (d, $J = 2.3 \text{ Hz}$), 154.2, 164.7.

Methyl 4-(3-chlorophenyl)-4-hydroxybut-2-ynoate: 57% yield. 80% ee determined by HPLC analysis (Chiralcel OD-H column, IPA : hexane = 8 : 92). Retention time: $t_{\text{minor}} = 12.19 \text{ min}$, $t_{\text{major}} = 10.87 \text{ min}$. 1H NMR (400 MHz, CDCl$_3$) δ: 2.80 (d, $J = 6.0 \text{ Hz}$, 1H), 3.80 (s, 3H), 5.56 (d, $J = 4.4 \text{ Hz}$, 1H), 7.33–7.34 (m, 2H), 7.39–7.41 (m, 1H), 7.52 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ: 53.5, 63.9, 78.1, 86.5, 125.2, 127.2, 129.5, 130.5, 135.1, 140.8, 154.2.

Methyl 4-hydroxy-4-(naphthalen-4-yl)but-2-ynoate: 73% yield. 83% ee determined by HPLC analysis (Chiralcel AD-H column, IPA : hexane = 10 : 90). Retention time: $t_{\text{minor}} = 13.54 \text{ min}$, $t_{\text{major}} = 16.34 \text{ min}$. 1H NMR (400 MHz, CDCl$_3$) δ: 2.62 (d, $J = 6.0 \text{ Hz}$, 1H), 3.79 (s, 3H), 6.23 (d, $J = 6.0 \text{ Hz}$, 1H), 7.46–7.61 (m, 3H), 7.80 (d, $J = 7.2 \text{ Hz}$, 1H), 7.88 (t, $J = 8.0 \text{ Hz}$, 2H), 8.23 (d, $J = 8.4 \text{ Hz}$, 1H); 13C
NMR (100 MHz, CDCl₃) δ: 53.3, 62.9, 78.4, 87.1, 123.9, 125.4, 125.6, 126.5, 127.2, 129.2, 130.3, 130.7, 134.1, 134.4, 154.3.

Methyl 4-hydroxy-4-(naphthalen-2-yl)but-2-ynoate: 43% yield. 73% ee determined by HPLC analysis (Chiralcel AD-H column, IPA : hexane = 10 : 90). Retention time: $t_{\text{minor}} = 15.37$ min, $t_{\text{major}} = 19.34$ min. 1H NMR (400 MHz, CDCl₃) δ: 2.64 (d, $J = 5.2$ Hz, 1H), 3.80 (s, 3H), 5.74 (d, $J = 3.6$ Hz, 1H), 7.50–7.53 (m, 2H), 7.61 (d, $J = 8.4$ Hz, 1H), 7.84–7.89 (m, 3H), 7.97 (s, 1H); 13C NMR (100 MHz, CDCl₃) δ: 53.4, 64.8, 78.2, 87.1, 124.7, 126.2, 126.9, 127.1, 128.2, 128.7, 129.3, 133.5, 133.8, 136.2, 154.3.

Methyl 4-hydroxy-4-(4-methoxyphenyl)but-2-ynoate: 47% yield. 63% ee determined by HPLC analysis (Chiralcel AD-H column, IPA : hexane = 10 : 90). Retention time: $t_{\text{minor}} = 14.47$ min, $t_{\text{major}} = 16.91$ min. 1H NMR (400 MHz, CDCl₃) δ: 2.41 (br, 1H), 3.80 (s, 3H), 3.82 (s, 3H), 5.52 (s, 1H), 6.92 (d, $J = 8.8$ Hz, 2H), 7.44 (d, $J = 8.4$ Hz, 2H); 13C NMR (100 MHz, CDCl₃) δ: 53.4, 55.8, 64.2, 70.8, 87.4, 114.6, 128.6, 131.3, 154.3, 160.4.

Ethyl 4-hydroxy-4-phenylbut-2-ynoate: 81% yield. 81% ee determined by HPLC analysis (Chiralcel OD-H column, IPA : hexane = 20 : 80). Retention time: $t_{\text{minor}} = 8.77$ min, $t_{\text{major}} = 9.54$ min. 1H NMR (400 MHz, CDCl₃) δ: 1.32 (d, $J = 7.2$ Hz, 3H), 2.55 (d, $J = 6.0$ Hz, 1H), 4.25 (q, $J = 7.2$ Hz, 2H), 5.58 (d, $J = 5.2$ Hz, 1H), 7.35–7.43 (m, 3H), 7.53 (d, $J = 7.2$ Hz, 2H); 13C NMR (100 MHz, CDCl₃) δ: 14.3, 62.8, 64.4, 78.1, 87.0, 127.1, 129.2, 139.0, 154.0.

Ethyl 4-hydroxy-4-(naphthalen-4-yl)but-2-ynoate: 76% yield. 77% ee determined by HPLC analysis (Chiralcel AD-H column, IPA : hexane = 10 : 90). Retention time: $t_{\text{minor}} = 12.82$ min, $t_{\text{major}} = 16.52$ min. 1H NMR (400 MHz, CDCl₃) δ: 1.31 (t, $J = 7.2$ Hz, 3H), 2.66 (d, $J = 6.0$ Hz, 1H), 4.25 (q, $J = 7.2$ Hz, 2H), 6.23 (d, $J = 5.6$ Hz, 1H), 7.46–7.61 (m, 3H), 7.80 (d, $J = 7.2$ Hz, 1H), 7.88 (t, $J = 8.0$ Hz, 2H), 8.23 (d, $J = 8.4$ Hz, 1H); 13C NMR (100 MHz, CDCl₃) δ: 14.3, 62.7, 62.8, 78.8, 86.7, 124.0, 125.4, 125.6, 126.4, 127.1, 129.2, 130.2, 130.7, 134.1, 134.3, 154.0.

Ethyl 4-hydroxy-4-(naphthalen-3-yl)but-2-ynoate: 70% yield. 74% ee determined by HPLC analysis (Chiralcel AD-H column, IPA : hexane = 10 : 90). Retention time:
$t_{\text{minor}} = 15.17 \text{ min, } t_{\text{major}} = 16.79 \text{ min.} \ ^1\text{H NMR (400 MHz, CDCl}_3\text{)} \delta: \ 1.33 \ (t, \ J = 7.2 \text{ Hz, 3H}), \ 2.58 \ (d, \ J = 5.6 \text{ Hz, 1H}), \ 4.27 \ (q, \ J = 7.2 \text{ Hz, 2H}), \ 5.75 \ (d, \ J = 8.0 \text{ Hz, 1H}), \ 7.51–7.53 \ (m, 2H), \ 7.61–7.64 \ (m, 1H), \ 7.84–7.90 \ (m, 3H), \ 7.98 \ (s, 1H); \ ^{13}\text{C NMR (100 MHz, CDCl}_3\text{)} \delta: \ 14.3, \ 62.8, \ 64.6, \ 78.3, \ 87.0, \ 124.7, \ 126.1, \ 126.8, \ 126.9, \ 128.1, \ 128.6, \ 129.1, \ 133.4, \ 133.7, \ 136.3, \ 154.0.$
Copies of 1H, ^{13}C NMR Spectra for Products:
CDCl₃

H₂O

ppm (δ)
CDCl₃

OH

H₂O

CDCl₃

ppm (δ)

159.014 133.985 127.915 79.972 77.940 77.500 77.480 62.775 14.346

CDCl₃

ppm (δ)