Supporting Information
© Georg Thieme Verlag KG Stuttgart · New York 2009
SUPPORTING INFORMATION

A one-pot synthesis of 2-aryl-4,5-anti-diphenyl oxazolines
Jonathan Clayden*, James Clayton, Rebecca A. Harvey, and Ol'ga Karlubíková

General Information
NMR spectra were recorded on a Varian XL 300 or a Bruker Ultrashield 300, 400 or 500 spectrometer. The chemical shifts (δ) are reported in ppm downfield of trimethylsilane and coupling constants (J) reported in hertz (Hz). Splitting patterns are abbreviated as follows: singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), broad (br), or a combination of these. Solvents were used as internal standard when assigning NMR spectra (δH: CDCl3 7.27 ppm; δC: CDCl3 77.0 ppm).

Low and high resolution mass spectra were recorded by staff at the University of Manchester. EI and CI spectra were recorded on a Micromass Trio 2000; ES and APCI spectra were recorded on a Micromass Platform II; high resolution mass spectra (HRMS, EI and ES) were recorded on a Thermo Finnigan MAT95XP mass spectrometer.

Infrared spectra were recorded on a Perkin Elmer Spectrum RX I FTIR spectrometer as a film on a sodium chloride plate. Absorptions reported are sharp and strong unless otherwise stated as broad (br), medium (m), or weak (w), only absorption maxima of interest are reported.

Melting points (mpt) were determined on a Gallenkamp apparatus and are uncorrected.

Thin layer chromatography (TLC) was performed using commercially available precoated plates (Macherey-Nagel alugram Sil G/UV254) and visualised with UV light at 254 nm or phosphomolybdic acid dip (5 % in ethanol).

Flash chromatography was carried out using Fluorochem Davisil 40-63μ 60 Å.

All reactions were conducted under an atmosphere of dry nitrogen in oven dried glassware. Dichloromethane was obtained by distillation from calcium hydride under nitrogen. Petrol refers to the fraction of light petroleum ether boiling between 40-65 °C. All other solvents and commercially obtained reagents were used as received or purified using standard procedures.
General procedures

General procedure I for the synthesis of oxazolines from the benzoyl chloride. The amino-alcohol \(((1R,2S)-2\text{-amino-1,2-diphenylethanol}) \) (1.0 equiv.) was dissolved in dry DCM (0.1 mmol/mL) sealed and cooled to 0°C. Et\(_3\)N (4 equiv.) was added by syringe with stirring. Benzoyl chloride (1.1 eq.) was added dropwise over a period of 5 min to the stirred solution. A precipitate formed, stirring was continued and the reaction mixture was allowed to reach RT. After complete consumption of starting material was indicated by TLC. The emulsion was cooled to 0°C. Methanesulfonyl chloride (1.5 eq.) was added dropwise over a period of 10 min. The reaction mixture clarified and was removed from the ice bath. It was stirred until complete consumption of the amide was indicated by TLC. The reaction mixture was treated with excess saturated NH\(_4\)Cl and extracted twice with DCM. The combined organic extractions were dried (MgSO\(_4\)) and solvent was removed under reduced pressure to give the crude oxazoline.

General procedure II for the synthesis of oxazolines from the carboxylic acid.

Carboxylic acid (1 eq.) was stirred in thionyl chloride:DCM (1 ml:1 ml/ 0.5 g) until complete by IR. The solvent and thionyl chloride were removed under reduced pressure to afford the benzoyl chloride. The crude benzoyl chloride (1.0 eq.) in DCM (2 ml / mmol) was then added drop-wise to a stirred solution of amine \((1R,2S)-2\text{-amino-1,2-diphenylethanol}) \) (1.0 eq.) and Et\(_3\)N (4 eq.) in DCM (15 ml /mmol) at 0°C under nitrogen. The reaction mixture was allowed to reach RT then stirred until complete by TLC. Methanesulfonyl chloride was then added (1.5 eq.) the solution was stirred until no amide remained by TLC. Reaction mixture was then quenched with NH\(_4\)Cl (0.25 x reaction volume). The organic layer was separated and the aqueous layer was further extracted with DCM (3 x (0.25 x reaction volume)). The combined organic extractions were dried (NaSO\(_4\)) and solvent was removed under reduced pressure to give the crude oxazoline.
(4R,5R)-4,5-dihydro-2,4,5-triphenyloxazole (4a)

General procedure I was applied to benzoyl chloride (0.59 mL, 1.1 eq.) to give the crude oxazoline. Purification by flash column chromatography, eluting with Petrol:EtOAc (9:1) gave oxazoline 4a (0.97g, 71 %) as a colourless solid.

R_f: 0.51 (4:1 Petrol:EtOAc); M_p: 106-108 °C (PhMe), (lit. 93-95 °C, Et$_2$O); $[\alpha]_{D}^{22} = -11^\circ \ (c = 3, \text{EtOH})$; $M/S \ m/z \ (\text{Cl}^+)$: 300 (100%) [MH$^+$]; $\text{IR } \nu_{\text{max(film)}}/\text{cm}^{-1}$: 1650, 1602, 1494, 1325; $^1\text{H-NMR}$ (CDCl$_3$, 300 MHz): δ 8.07 (d, $J=8$, 2H, C$_2$, C$_6$), 7.32 (m, 13H, ArH), 5.35 (d, $J=8$, PhC$_2$H$_2$O), 5.17 (d, $J=8$, PhC$_2$H$_2$N); $^{13}\text{C-NMR}$ (CDCl$_3$, 75.5 MHz): δ 164.1, 141.9, 140.5, 131.8, 128.9, 128.9, 128.7, 128.5, 128.4, 127.8, 127.4, 126.7, 125.8, 89.0, 78.0.

(4R,5R)-4,5-dihydro-2-(4-methoxyphenyl)-4,5-diphenyloxazole (4b)

(1R,2S)-2-Amino-1,2-diphenylethanol (10 g, 1.0 eq.) was dissolved in dry DCM (1 L) sealed and cooled to 0°C. Et$_3$N (26.1 mL, 4 eq.) was added by syringe with stirring. Benzoyl chloride (7.15mL, 1.1 eq.) was added dropwise over a period of 20 min to the stirred solution. A precipitate formed, stirring was continued and the reaction mixture was allowed to reach RT. After 5 hours complete consumption of starting material was indicated by TLC. The emulsion was cooled to 0°C. Methane sulfonyl chloride (5.43mL, 1.5 eq.) was added drop-wise over a period of 40 min. The reaction mixture clarified and was removed from the ice bath. It was stirred for 1 hour until complete consumption of the amide was indicated by TLC. The reaction mixture was treated with excess saturated NH$_4$Cl and extracted twice with DCM. The combined organic extractions were dried (MgSO$_4$). The crude oxazoline was dry loaded on to silica and purified by flash chromatography (9:1) (petroleum ether: ethyl acetate) to give oxazoline 4b as colourless solid (13.71g, 89%).

R_f: 0.25 (8:2, Petrol:EtOAc); M_p: 90 °C (Petrol:EtOAc); $[\alpha]_{D}^{22} = -36^\circ \ (c. 1, \text{CHCl}_3$); $M/S \ m/z \ (\text{ES}^+)$: 330.4 (100%) [MH$^+$]; HRMS: Found: 330.1485, C$_{22}$H$_{19}$NO$_2$ requires M+H$^+$, 330.1489; $\text{IR } \nu_{\text{max(film)}}/\text{cm}^{-1}$: 3030, 1647; $^1\text{H-NMR}$ (CDCl$_3$, 400 MHz): δ 7.99 (d, 2H, J 9, ArH), 7.19-7.34 (m, 10H, ArH), 6.89 (d, 2H, J 9, ArH), 5.29 (d, 1H, J 7, PhCHO), 5.11 (d, 1H, J 7, PhCHN), 3.78 (s, 3H, OCH$_3$); $^{13}\text{C-NMR}$ (CDCl$_3$, 100 MHz): δ 162.8, 161.4, 141.2, 139.6, 129.4, 127.9, 127.8, 127.3, 126.7, 125.7, 124.7, 118.9, 112.8, 87.9, 78.0, 54.4;
(4R,5R)-2-(4-fluorophenyl)-4,5-dihydro-4,5-diphenyloxazole (4c)

General procedure I was applied to 4-fluorobenzoyl chloride (0.3 mL, 1.1 eq.) to give the crude oxazoline. Purification by flash column chromatography, eluting with Petrol:EtOAc (9.5:0.5) gave oxazoline 4c (0.65g, 90 %) as a colourless solid.

Rf: 0.3 (9:1, Petrol:EtOAc); Mpt: 92 ºC (Petrol:EtOAc); [α]22°D: -2º (c. 1, CHCl3); MS m/z (ES⁺): 318.1 (100%) [MH⁺]; HRMS: Found: 318.1294, C21H16FNO requires M⁺H⁺, 318.1289; IR νmax (film)/cm⁻¹: 1651, 3030; ¹H-NMR (CDCl3, 500 MHz): δ 8.06 (dd, 2H, J 12, 5, ArH), 7.28 (m, 10H, ArH), 7.08 (t, 2H, J 8.5, ArH), 5.34 (d, 1H, J 7.5, PhCHO), 5.15 (d, 1H, J 7.5, PhCHN); ¹³C-NMR (CDCl3, 125 MHz): δ 164.9, 162.1, 140.8, 139.3, 129.9, 129.8, 128.0, 127.8, 127.5, 126.8, 125.7, 124.7, 122.7, 114.7, 144.5, 88.2, 77.9;

(4R,5R)-4,5-dihydro-2-(3-methoxyphenyl)-4,5-diphenyloxazole (4d)

General procedure I was applied to 3-methoxy benzoyl chloride (0.7 mL, 1.1 eq.) to give the crude oxazoline. Purification by flash column chromatography, eluting with Petrol:EtOAc (8:2) gave oxazoline 4d (1.14g, 88 %) as a colourless solid.

Rf: 0.138 (9:1, Petrol:EtOAc); Mpt: 92 ºC (Petrol:EtOAc); [α]22°D: -4º (c. 1, CHCl3); MS m/z (ES⁺): 330.2 (80%) [MH⁺], 352.1 (100%, M+Na⁺); HRMS: Found 318.1282, C22H19NO₂ requires M⁺H⁺, 318.1289; IR νmax (film)/cm⁻¹: 3030, 1650; ¹H-NMR (CDCl3, 400 MHz): δ 7.65 (d, 1H, J 8, ArH), 7.60 (s, 1H, ArH), 7.29 (m, 11H, ArH), 7.02 (dd, 1H, J 8, 4, ArH), 5.34 (d, 1H, J 8, PhCHO), 5.15 (d, 1H, J 8, PhCHN), 3.80 (s, 3H, OCH₃); ¹³C-NMR (CDCl3, 100 MHz): δ 164.0, 159.6, 141.9, 140.5, 129.6, 128.9, 128.9, 128.7, 127.5, 127.8, 126.8, 125.7, 121.1, 118.6, 112.8, 89.1, 79.1, 55.5;
(4R,5R)-2-(3-fluorophenyl)-4,5-dihydro-4,5-diphenyloxazole (4e)

General procedure I was applied to 3-fluorobenzoyl chloride (0.61 mL, 1.1 eq.) to give the crude oxazoline. Purification by flash column chromatography, eluting with Petrol:EtOAc (9:1) gave oxazoline 4e (1.16g, 80 %) as a colourless solid.

Rf: 0.34 (3:2, Petrol:EtOAc); Mpt: 62 ºC (Petrol:EtOAc); [α]22ºD : -2.8º (c. 1, CHCl3); MS m/z (ES+): 318.2 (100%) [MH+]; HRMS: Found 138.1282, C21H16FNO requires M+H+, 138.1289; IR νmax (film)/cm-1: 3030 (C-H), 1635 (C=N); ¹H-NMR (CDCl3, 500 MHz): δ 7.86 (d, 1H, J 7.5, ArH), 7.76 (dd, 1H, J 9.5, 1.5, CH C4), 7.27 (m, 12H, ArH), 5.35 (d, 1H, J 4.5, PhCO), 5.35 (d, 1H, J 4.5, PhCN).

(4R,5R)-2-(2-fluorophenyl)-4,5-dihydro-4,5-diphenyloxazole (4f)

General procedure I was applied to 2-fluorobenzoyl chloride (1.22 mL, 1.1 eq.) to give the crude oxazoline. Purification by flash column chromatography, eluting with Petrol:EtOAc (9:1) gave oxazoline 4f (1.36g, 46 %) as a colourless solid.

Rf: 0.23 (4:1, Petrol:EtOAc); Mpt: 84 ºC (Petrol:EtOAc); [α]22ºD : -3.6º (c. 1, CHCl3); MS m/z (ES+): 318.2 (100%) [MH+]; HRMS: Found 318.1287, C21H16FNO requires M+H+, 318.1289; IR νmax (film)/cm-1: 1640, 3030; ¹H-NMR (CDCl3, 400 MHz): δ 8.02 (t, 1H, J 7.5, ArH), 7.49-7.43 (m, 1H, ArH), 7.37-7.24 (m, 10H, ArH), 7.20-7.13 (m, 2H, ArH), 5.36 (d, J 8, 1H, PhCHO), 5.22 (d, J 8, 1H, PhCHN); ¹³C-NMR (CDCl3, 125 MHz): δ 161.5, 159.8, 147.7, 139.3, 132.2, 130.4, 127.9, 127.8, 127.5, 126.8, 125.7, 124.6, 123.1, 123.0, 115.8, 114.9, 87.5, 78.0;
General procedure II was applied to 4-methoxy-3-(3-triisopropylsilanyloxy-propyl)benzoic acid (0.54 g, 1.5 mmol) to give the crude oxazoline. Purification by flash column chromatography, eluting with Petrol:EtOAc (4:1) gave oxazoline 4g (0.64 g, 88%) as colourless oil.

$$\text{Rf}: 0.43 \text{ (4:1 Pet:EtOAc); } [\alpha]_D^{20}: -27.6^\circ (c = 1.015, \text{DCM}); \text{ MS m/z (ES$^+$): 544.3 (50%) [MH$^+$]; HRMS: Found 544.3247, C$_{36}$H$_{46}$O$_3$NSi requires MH$^+$, 544.3241; IR ν_{max} (film)/cm$^{-1}$: 2940, 2863, 1647, 1499, 1252; 1H-NMR (CDCl$_3$ 400 MHz): δ 8.00-7.94 (m, 2H, ArH), 7.44-7.27 (m, 10H, ArH), 7.36 (d, 1H, J 8.0, ArH), 6.91 (d, 1H, J 8.3, ArH), 5.38 (d, 1H, J 7.5, PhCHO), 5.20 (d, 1H, J 7.5, PhCHN), 3.89 (s, 3H, OC$_3$H$_3$), 3.72 (t, 2H, J 6 and 6, ArCH$_2$), 2.78-2.70 (m, 2H, CH$_2$CH$_2$CH$_2$), 1.92-1.83 (m, 2H, CH$_2$O), 1.14-1.03 (m, 21H, Si(iPr)$_3$); 13C-NMR (CDCl$_3$, 100 MHz): 164.2, 160.5, 142.3, 140.7, 131.1, 130.4, 138.9, 128.8, 128.4, 128.1, 127.7, 126.8, 125.7, 119.4, 109.8, 88.9, 63.2, 55.4, 32.9, 26.7, 18.1, 12.0

General procedure II was applied to 4-methoxy-3-triisopropylsilanyloxymethyl-benzoic acid (0.45 g, 1.3 mmol) to give the crude oxazoline. Purification by flash column chromatography, eluting with Petrol:EtOAc (4:1) gave oxazoline 4h (0.49 g, 67%) as a yellow gum.

$$\text{Rf}: 0.73 \text{ (2:1 Petrol:EtOAc); } [\alpha]_D^{19}: -48.2^\circ (c = 1.025, \text{CDCl$_3$}); \text{ MS m/z (ES$^+$): 516.3 (100%) [MH$^+$]; HRMS: Found 516.2931, C$_{32}$H$_{42}$O$_3$NSi requires MH$^+$, 516.2928; IR ν_{max} (film)/cm$^{-1}$: 2945, 2865, 1647, 1497, 1259; 1H-NMR (CDCl$_3$ 500 MHz): δ 8.25 (s, 1H, ArH), 7.96 (dd, 1H, J 2.0, 9.0, ArH), 6.79 (d, 1H, J 9.0, ArH), 7.31-7.17 (m, 10H, ArH), 5.31 (d, 1H, J 7.0, PhCHO), 5.1 (d, 1H, J 7.0, PhCHN), 4.78 (s, 2H, ArCH$_2$), 3.76 (s, 3H, OCH$_3$), 1.07 (m, 21H, Si(iPr)$_3$); 13C-NMR: (CDCl$_3$ 75 MHz): δ 163.3, 157.8, 141.5, 139.9, 129.2, 127.8, 127.1, 126.6, 126.6, 125.8, 124.4, 118.8, 108.4, 87.5, 77.9, 59.2, 54.4, 17.0, 16.7, 13.0, 11.5, 11.3, 11.1, 10.7
(4R,5R)-2-(3-(chloromethyl)-4-methoxyphenyl)-4,5-dihydro-4,5-diphenyloxazole (4i)

General procedure II was applied to 3-(chloromethyl)-4-methoxybenzoic acid (0.5 g, 2.5 mmol) to give the crude oxazoline. Purification by flash column chromatography, eluting with Petrol:EtOAc (4:1) gave oxazoline 4i (0.64 g, 67%) as a white amorphous solid.

R_f: 0.79 (2:1 Pet:EtOAc); M_p: 108-110 °C (Petrol:EtOAc); [α]^{19.5} _D: -40° (c = 1.115, DCM); MS <i>m</i>/<i>z</i> (ES⁺): 400.0 (100%) [MNa⁺]; HRMS: Found 400.1088, C₂₃H₂₀O₂NClNa requires MNa⁺, 400.1075; IR ν_{max}(film)/cm⁻¹: 1648, 1504; ¹H-NMR (CDCl₃, 400 MHz): 8.22 (d, 1H, <i>J</i> 2.2, ArH), 8.15 (dd, 1H, <i>J</i> 2.2 8.6, ArH), 7.47-7.31 (m, 10H, ArH), 6.99 (d, 1H, <i>J</i> 8.7, ArH), 5.44 (d, 1H, <i>J</i> 7.6, PhCHO), 5.26 (d, 1H, <i>J</i> 7.6, PhCHN), 4.7 (m, 1H, PhC₆H₂), 3.94 (s, 3H, OCH₃);¹³C-NMR (CDCl₃, 75 MHz): 163.3, 160.0, 141.9, 140.3, 130.0, 128.8, 128.7, 128.3, 127.6, 126.6, 126.0, 125.6, 119.8, 110.5, 88.9, 78.8, 55.7, 41.0;

3-(3-(5-((4R,5R)-4,5-dihydro-4,5-diphenyloxazol-2-yl)-2-methoxyphenyl)propyl)-1,1-diisopropylurea (4j)

General procedure II was applied to 3-(3-diisopropylcarbamoyloxy-propyl)-4-methoxy-benzoic acid (0.5 g, 1.9 mmol) to give the crude oxazoline. Purification by flash column chromatography, eluting with Petrol:EtOAc (4:1) gave oxazoline 4j (0.61 g, 90%) as a colourless gum.

R_f: 0.4 (4:1 Pet:EtOAc); [α]^{19.5} _D: -37° (c = 1.185, DCM); MS <i>m</i>/<i>z</i> (ES⁺): 515.1 (100%) [MH⁺]; HRMS: Found 515.2904; IR <i>ν</i>_{max}(film)/cm⁻¹: 1690, 1646, 1500, 1289; ¹H-NMR (CDCl₃, 300 MHz): δ (d, 1H, <i>J</i> 8.6, ArH), 7.96 (d, 1H, J 1.9, ArH), 7.44-7.27 (m, 10H, PhH), 6.92 (d, 1H, J 8.6, ArH), 5.40 (d, 1H, J 7.5, PhCHO), 5.20 (d, J 7.5, PhCHN), 4.12 (m, 2H, CH₂C₆H₄), 2.83-2.68 (m, 2H, CH₂C₆H₄CH₂), 2.03-1.19 (m, 2H, CH₃O), 1.26 (t, 2H, J 7.2, NCH(PC₃H₂)), 1.21 (d, 12H, J 6.4, NCH(PC₃H₂)₂); ¹³C-NMR (CDCl₃, 100 MHz) 164.1, 160.4, 155.9, 130.4, 130.3, 128.9, 128.8, 128.4, 127.7, 126.8, 125.7, 109.9, 88.9, 64.5, 55.5, 29.3, 27.1;
1-benzyl-3-(3-((4R,5R)-4,5-dihydro-4,5-diphenyloxazol-2-yl)phenyl)urea (4k)

General procedure II was applied to 3-(3-benzylureido)-4-methoxybenzoic acid (0.4 g, 1.2 mmol) to give the crude oxazoline. Purification by flash column chromatography, eluting with Petrol:EtOAc (4:1) gave oxazoline 4k (0.394 g, 67%) as a pale yellow amorphous solid.

Rf: 0.7 (1:1 EtOAc: Petrol); **Mpt**: 81-84°C (EtOAc); **[^2]αααα**D: -3.4° (c. 1, DCM); **MS m/z** (ES^+^): 478.4 (100%) [MH]^+^; **HRMS**: Found 500.1936, C_{30}H_{27}N_{3}O_{3}Na requires MNa^+, 500.1845; **IR ν_max**(film)/cm^-1^: 3350, 1644, 1555; **^1^H-NMR** (CDCl_3, 500 MHz): δ 8.71, (d, 1H, J 2, ArH), 7.69 (dd, 1H, J 2 8.5, ArH), 7.28-7.09 (m, 15H, Ph), 6.74 (d, 1H, J 8.5, ArH), 5.64 (t, 1H, J 5.5, NH), 5.26 (d, 1H, J 8.0, PhCHO), 5.06 (d, 1H, J 7.5, PhCHN) 5.04 (t, 1H, J 5.5, NH), 4.310-4.18 (m, 2H, CH_2Ph), 3.67 (s, 3H, OC_3H_3); **^13^C-NMR** (CDCl_3, 125 MHz): δ 164.3, 158.3, 155.2, 150.7, 142.1, 140.5, 139.2, 139, 128.8, 128.5, 128.3, 127.7, 127.6, 127.4, 127.3, 127.2, 126.8, 125.8, 123.6, 120.3, 119.7, 109.8, 89.0, 78.9, 55.8, 44.4

(4R,5R)-2-(3-(allyloxy)phenyl)-4,5-dihydro-4,5-diphenyloxazole (4l)

General procedure II was used employing of 3-(allyl oxy)benzoic acid (0.5 g, 2.8 mmol) to give the crude oxazoline. Purification by flash column chromatography, eluting with Petrol:EtOAc (10:1) gave oxazoline 4l (997 mg, 66%) as a colourless oil.

Rf: 0.12 (4:1, Petrol:EtOAc); **MS m/z** (ES^+^) 314 (100%) [M-H]^+^; **HRMS**: Found 338.1143, C_{24}H_{21}NO_2 requires M-H^-, 338.1138; **^1^H-NMR** (CDCl_3, 500 MHz): δ 7.74 (d, 1H, J 7.7 ArH), 7.69 (s, 1H, ArH), 7.43-7.30 (m, 11H, ArH and PhH), 7.12 (dd, 1H, J 2.2, 8.2, ArH), 6.11-6.03 (m, 1H, CH=CHArA), 5.44 (dd, 1H, J 1.0 17.0, CH=CH_ArB), 5.42 (d, 1H, J 8.0, PhCHO), 5.30 (d, 1H, J 10.3, CH=CH_ArB), 5.23 (d, 1H, J 7.6, PhCHN), 4.60 (d, 2H, J 4.5, OCH_2); **^13^C-NMR** (CDCl_3, 75.5 MHz): δ 164.6, 156.3, 141.6, 140.1, 129.8, 128.9, 128.9, 128.5, 128.2, 127.9, 126.7, 125.6, 120.6, 119.4, 115.5, 89, 78.4.
(4R,5R)-2-(3-(allyloxy)-4-methoxyphenyl)-4,5-dihydro-4,5-diphenyloxazole (4m)

General procedure II was used employing of 3-allyloxy-4-methoxybenzoic acid (0.5 g, 2.4 mmol) to give the crude oxazoline. Purified by flash column chromatography, eluting with Petrol:EtOAc (10:1) gave oxazoline 4m (180 mg, 20%) as a colourless oil.

Rf = 0.2 (9:1 Pet. Ether:EtOAc); [α]D25 = -5.21 (c = 4.3, CHCl3) MS m/z (ES+): 386 (100%) [MH]+; HRMS: Found 408.1569, C25H23NO3 requires MH+, 408.1570; IR νmax(film)/cm⁻¹: 2928, 1718, 1646, 1513, 1271; ¹H-NMR (CDCl3, 500 MHz): δ 7.66 (dd, 1H, J 1.5 8.5, ArH); 7.61 (bs, 1H, ArH); 7.38-7.20 (m, 10H, PhH); 6.87 (d, 1H, J 8.5, ArH); 6.09-5.98 (m, 1H, CH=CH₂); 5.36 (dd, 1H, J 1.0 17.0, CH=CH₂); 5.32 (d, 1H, J 7.5, PhCHO); 5.23 (dd, 1H, J 1.0 10.5, CH=CH₂); 5.13 (d, 1H, J 7.5, PhCHN); 4.59 (bd, 2H, J 5.0, OCH₂); 3.87 (s, 3H, OMe); ¹³C-NMR (CDCl3, 125 MHz): δ 152.6, 147.8, 141.9, 140.3, 132.7, 129.0, 128.9, 128.5, 128.2, 127.9, 126.8, 126.3, 125.8, 122.6, 118.5, 112. 9, 110.8, 89.2, 69.9, 65.5, 56.1