Supporting Information
for DOI: 10.1055/s-0029-1217969
© Georg Thieme Verlag KG Stuttgart · New York 2009
Supporting Information

Efficient One-Pot Regioselective Synthesis of 2,3-Dibromo-5,10,15,20-tetraarylporphyrins from 5,10,15,20-Tetraarylchlorins

Ke-Lai Li, Can-Cheng Guo, Qing-Yun Chen

College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China, and Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China

ccguo@hnu.cn; chenqy@mail.sioc.ac.cn

a Hunan University
b Shanghai Institute of Organic Chemistry

Contents

Table of contents..S1

I. Experimental details and characterization data for all new compounds...............................S2-7

II. Copies of 1H NMR and 19F NMR spectra for key and new compounds.........................S8-13
I. Experimental details and characterization data for all new compounds

Materials and Instrumentations:

NMR spectra were recorded at 300 MHz for 1H and 282 MHz for 19F NMR spectra. Deuterated solvents for 1H NMR were purchased from Cambridge Isotope Laboratories, Aldrich or Acros. MS were recorded on a Hewlett-Packard HP-5989A spectrometer. UV – vis spectra were measured at 20 °C with a Varian Cary 100 spectrophotometer. Elementary analyses were obtained on a Perkin Elmer 2400 Series II Elemental Analyzer. TLC analyses were performed on silica gel plate and column chromatography over silica gel (mesh 300 – 400), which were both obtained from Qingdao Ocean Chemicals. Unless otherwise noted, reagents were commercial available and used as received.

5,10,15,20-tetraarylchlorins 2 were synthesized according to the literature method.1

5,10,15,20-tetraphenylchlorin (2a)1: purple crystals; 730 mg, yield 73%. 1H NMR (300 MHz, CDCl$_3$) δ 8.57 (d, $J = 3.9$ Hz, 2H, β-H), 8.42 (s, 2H, β-H), 8.17 (d, $J = 3.9$ Hz, 2H, β-H), 8.11 (d, $J = 5.7$ Hz, 4H, o-Ph-H), 7.87 (d, $J = 4.8$ Hz, 4H, o-Ph-H), 7.68 – 7.69 (m, 12H, m-Ph-H & p-Ph-H), 4.16 (s, 4H, CH$_2$), – 1.45 (s, 2H, NH); MS (MALDI) m/z 616.3 (M$^+$).

5,10,15,20-tetra(p-chlorophenyl)chlorin (2b): purple crystals; 736 mg, yield 60%. 1H NMR (300 MHz, CDCl$_3$) δ 8.56 (d, $J = 4.5$ Hz, 2H, β-H), 8.40 (s, 2H, β-H), 8.18 (d, $J = 4.5$ Hz, 2H, β-H), 8.02 (d, $J = 7.8$ Hz, 4H, o-Ph-H), 7.80 (d, $J = 7.8$ Hz, 4H, o-Ph-H), 7.67 (d, $J = 7.5$ Hz, 8H, m-Ph-H), 4.15 (s, 4H, CH$_2$), – 1.52 (s, 2H, NH); UV – vis (CH$_2$Cl$_2$) λ_{max} (relative intensity) 419 (1.00), 519 (0.09), 545 (0.06), 599 (0.04), 652 (0.19) nm; MS (MALDI) m/z 754.1 (M$^+$). Anal. Caled for C$_{44}$H$_{28}$Cl$_4$N$_4$·0.5H$_2$O (from CH$_2$Cl$_2$/wet CH$_3$OH): C, 69.21; H, 3.83; N, 7.34. Found: C, 69.35; H, 3.68; N, 7.34.
5,10,15,20-tetra(p-trifluoromethylphenyl)chlorin (2c): purple crystals; 1230 mg, yield 85%.

1H NMR (300 MHz, CDCl$_3$) δ 8.82 (s, 2H, β-H), 8.54 (d, $J = 4.5$ Hz, 2H, β-H), 8.35 (d, $J = 9.0$ Hz, 4H, o-Ph-H), 8.22 (d, $J = 7.5$ Hz, 4H, o-Ph-H), 8.16 (d, $J = 4.5$ Hz, 2H, β-H), 7.96 – 8.06 (m, 8H, m-Ph-H), 4.15 (s, 4H, CH$_2$), 1.49 (s, 2H, NH); 19F NMR (282 MHz, CDCl$_3$) δ – 58.3 (s, 12F); UV – vis (CH$_2$Cl$_2$) λ_{max} (relative intensity) 417 (1.00), 515 (0.07), 544 (0.04), 597 (0.03), 652 (0.15) nm; MS (MALDI) m/z 888.2 (M$^+$). Anal. Calcd for C$_{48}$H$_{28}$F$_{12}$N$_4$: C, 64.87; H, 3.18; N, 6.30. Found: C, 64.66; H, 3.11; N, 6.30.

Synthesis of 12,13-Dibromo-2,3-dihydro-5,10,15,20-tetraphenylchlorin 3a.

5,10,15,20-tetraphenylchlorin 2a (124 mg, 0.2 mmol) and NBS (80 mg, 0.44 mmol) were added to a Schlenk flask (50 mL). The flask was then evacuated and backfilled with nitrogen (three cycles). Then dry chloroform (ethanol free, 20 mL) was charged with a syringe. The reaction mixture was stirred and heated under reflux for 4 h. After being cooled to room temperature, triethylamine (1 mL) was added to neutralize the acids produced in the reaction. Then the reaction mixture was quickly filtered through a short silica plug (300 – 400 mesh, eluting with CH$_2$Cl$_2$). The filtrate was concentrated and recrystallized from CH$_2$Cl$_2$/MeOH to give pure products 3a.

12,13-Dibromo-2,3-dihydro-5,10,15,20-tetraphenylchlorin (3a): purple crystals; 151 mg, yield 98%. 1H NMR (300 MHz, CDCl$_3$) δ 8.51 (d, $J = 2.7$ Hz, 2H, β-H), 8.08 (d, $J = 2.7$ Hz, 2H, β-H), 8.02 (d, $J = 6.0$ Hz, 4H, o-Ph-H), 7.82 (d, $J = 6.0$ Hz, 4H, o-Ph-H), 7.67 – 7.70 (m, 12H, m-Ph-H & p-Ph-H), 4.07 (s, 4H, CH$_2$), 1.40 (s, 2H, NH); UV – vis (CH$_2$Cl$_2$) λ_{max} (relative intensity) 428 (1.00), 529 (0.08), 598 (0.05), 650 (0.10) nm; MS (MALDI) m/z 774.1 (M$^+$). Anal. Calcd for C$_{44}$H$_{30}$Br$_2$N$_4$·2H$_2$O (from CH$_2$Cl$_2$/wet CH$_3$OH): C, 65.20; H, 4.23; N, 6.91. Found: C, 65.00; H, 4.01; N, 6.90.

Synthesis of Zinc 12,13-Dibromo-2,3-dihydro-5,10,15,20-tetraphenylchlorin Zn3a.

Zn3a was synthesized according to the literature method.2 12,13-Dibromo-2,3-dihydro-5,10,15,20-tetraphenylchlorin 3a (77 mg, 0.1 mmol) and zinc acetate
dihydrate (66 mg, 0.3 mmol) were added to a Schlenk flask (20 mL). The flask was then evacuated and backfilled with nitrogen (three cycles). Then pyridine (10 mL) was charged with a syringe. The reaction mixture was stirred and heated at 100 °C under nitrogen for 1 h. To the cooled reaction mixture, benzene (20 mL) and distilled water (20 mL) were added. The organic layer was quickly washed with distilled water and brine and then filtered through a short silica plug (300 – 400 mesh, eluting with CH₂Cl₂). The filtrate was concentrated and recrystallized from CH₂Cl₂/MeOH to give mono-pyridinate complex of Zn₃a.

Zinc 12,13-Dibromo-2,3-dihydro-5,10,15,20-tetraphenylchlorin (Zn₃a): purple crystals; 66 mg, yield 72%. ¹H NMR (300 MHz, CDCl₃) δ 8.36 (d, J = 4.2 Hz, 2H, β-H), 7.96 (d, J = 4.2 Hz, 2H, β-H), 7.86 (d, J = 7.2 Hz, 4H, o-Ph-H), 7.77 (d, J = 7.2 Hz, 4H, o-Ph-H), 7.59 – 7.61 (m, 12H, m-Ph-H & p-Ph-H), 3.97 (s, 4H, CH₂); UV – vis (CH₂Cl₂) λₓᵧ (relative intensity) 424 (1.00), 553 (0.05), 619 (0.08) nm; MS (MALDI) m/z 836.0 (M⁺). Anal. Calcd for C₄₄H₂₈Br₂N₄Zn·C₅C₅N·4H₂O (from CH₂Cl₂/wet CH₃OH/pyridine): C, 59.50; H, 4.18; N, 7.08. Found: C, 59.68; H, 3.86; N, 7.08.

5,10,15,20-tetraarylchlorin 2 (0.2 mmol) and NBS (80 mg, 0.44 mmol) were added to a Schlenk flask (50 mL). The flask was then evacuated and backfilled with nitrogen (three cycles). Then dry chloroform (ethanol free, 20 mL) was charged with a syringe. The reaction mixture was stirred and heated under reflux for 4 h. After being slightly cooled, a solution of DDQ (184 mg, 0.8 mmol) in toluene (2 mL) was added, and the mixture was refluxed for further 1 h. After being cooled to room temperature, triethylamine (1 mL) was added to neutralize the acids produced in the reaction. Then the reaction mixture was filtered through a short silica plug (300 – 400 mesh, eluting with CH₂Cl₂). The filtrate was evaporated to dryness and the resulting solid was purified by flash chromatography (silica gel, 300 – 400 mesh, petroleum ether/CH₂Cl₂ as eluent) to yield the products 4.

2,3-Dibromo-5,10,15,20-tetraphenylporphyrin (4a): purple crystals; 148 mg, yield 96%. ¹H NMR (300 MHz, CDCl₃) δ 8.86 – 8.89 (m, 4H, β-H), 8.71 (s, 2H, β-H), 8.20 (d, J = 6.0 Hz, 4H, o-Ph-H), 8.16 (d, J = 6.3 Hz, 4H, o-Ph-H), 7.78 (bs, 12H, m-Ph-H & p-Ph-H), −2.83 (s, 2H, NH); MS (MALDI) m/z 772.1 (M⁺).
2,3-Dibromo-5,10,15,20-tetra(p-chlorophenyl)porphyrin (4b): purple crystals; 172 mg, yield 95%. 1H NMR (300 MHz, CDCl$_3$) δ 8.85 (s, 4H, β-H), 8.68 (s, 2H, β-H), 8.11 (d, $J = 6.0$ Hz, 4H, o-Ph-H), 8.05 (d, $J = 6.6$ Hz, 4H, o-Ph-H), 7.74 – 7.76 (m, 8H, m-Ph-H), – 2.93 (s, 2H, NH); UV – vis (CH$_2$Cl$_2$) λ_{max} (relative intensity) 425 (1.00), 522 (0.06), 599 (0.02), 687 (0.05) nm; MS (MALDI) m/z 909.9 (M$^+$). Anal. Calcd for C$_{44}$H$_{24}$Br$_2$Cl$_4$N$_4$·0.5H$_2$O (from CH$_2$Cl$_2$/wet CH$_3$OH): C, 57.49; H, 2.74; N, 6.09. Found: C, 57.39; H, 2.60; N, 6.16.

2,3-Dibromo-5,10,15,20-tetra(p-trifluoromethylphenyl)porphyrin (4c): purple crystals; 200 mg, yield 96%. 1H NMR (300 MHz, CDCl$_3$) δ 8.83 (s, 4H, β-H), 8.66 (s, 2H, β-H), 8.33 (d, $J = 7.2$ Hz, 4H, o-Ph-H), 8.27 (d, $J = 7.8$ Hz, 4H, o-Ph-H), 8.05 – 8.07 (m, 8H, m-Ph-H), – 2.91 (s, 2H, NH); 19F NMR (282 MHz, CDCl$_3$) δ – 61.9 (s, 6F), – 62.1 (s, 6F); UV – vis (CH$_2$Cl$_2$) λ_{max} (relative intensity) 418 (1.00), 517 (0.06), 596 (0.02), 656 (0.03) nm; MS (MALDI) m/z 1044.0 (M$^+$). Anal. Calcd for C$_{48}$H$_{24}$Br$_2$F$_{12}$N$_4$·0.3 C$_6$H$_{14}$ (from CH$_2$Cl$_2$/hexane): C, 55.88; H, 2.66; N, 5.23. Found: C, 55.77; H, 2.56; N, 5.41.

Typical Procedure for the Synthesis of 2,3,12,13-tetrabromo-5,10,15,20-tetraarylporphyrins 5.

5,10,15,20-tetraarylporphyrin 1 (0.5 mmol) and NBS (580 mg, 3.25 mmol) were dissolved in chloroform (ethanol free, 60 mL). The reaction mixture was stirred and heated under reflux for 4 h. After being cooled to room temperature, triethylamine (3 mL) was added to neutralize the acids produced in the reaction. Then the reaction mixture was filtered through a short silica plug (300 – 400 mesh, eluting with CH$_2$Cl$_2$). The filtrate was evaporated to dryness and the resulting solid was purified by flash chromatography (silica gel, 300 – 400 mesh, CH$_2$Cl$_2$ as eluent) to yield the products 5. The spectroscopic data were in agreement with literature values.4,5
2,3,12,13-Tetrabromo-5,10,15,20-tetraphenylporphyrin (5a): purple crystals; 386 mg, yield 83%. 1H NMR (300 MHz, CDCl$_3$) δ 8.70 (s, 4H, β-H), 8.18 (d, J = 6.0 Hz, 8H, o-Ph-H), 7.79 (bs, 12H, m-Ph-H & p-Ph-H), – 2.83 (s, 2H, NH); MS (MALDI) m/z 929.9 (M$^+$).

2,3,12,13-Tetrabromo-5,10,15,20-tetrakis(p-methylphenyl)porphyrin (5d): purple crystals; 394 mg, yield 80%. MS (MALDI) m/z 986.0 (M$^+$). The title compound was insoluble in common solvents and no 1H NMR spectrum was obtained.

2,3,12,13-Tetrabromo-5,10,15,20-tetrakis(p-methoxyphenyl)porphyrin (5e): purple crystals; 347 mg, yield 66%. 1H NMR (300 MHz, CDCl$_3$) δ 8.69 (s, 4H, β-H), 8.11 (d, J = 7.5 Hz, 8H, o-Ph-H), 7.33 (d, J = 7.5 Hz, 8H, p-Ph-H), – 2.72 (s, 2H, NH); MS (MALDI) m/z 1049.9 (M$^+$).
2,3,12,13-Tetrabromo-5,10,15,20-tetrakis(3’,5’-di-tert-butylphenyl)porphyrin (5f): purple crystals; 420 mg, yield 61%. 1H NMR (300 MHz, CDCl$_3$, TMS) δ 8.82 (s, 4H, β-H), 7.97 (s, 8H, o-Ph-H), 7.80 (s, 4H, p-Ph-H), 1.52 (s, 72H, CH$_3$), – 2.94 (s, 2H, NH); MS (MALDI) m/z 1378.4 (M$^+$$)$.

Reference:
Ⅱ. Copies of 1H NMR and 19F NMR spectra for key and new compounds

Figure S1. 300 MHz 1H NMR of 2a in CDCl$_3$

Figure S2. 300 MHz 1H NMR of 2b in CDCl$_3$
Figure S3. 300 MHz 1H NMR of 2c in CDCl$_3$

Figure S4. 282 MHz 19F NMR of 2c in CDCl$_3$
Figure S5. 300 MHz 1H NMR of 3a in CDCl$_3$

Figure S6. 300 MHz 1H NMR of 4a in CDCl$_3$
Figure S7. 300 MHz 1H NMR of 4b in CDCl$_3$

Figure S8. 300 MHz 1H NMR of 4c in CDCl$_3$
Figure S9. 282 MHz 19F NMR of 4c in CDCl$_3$

Figure S10. 300 MHz 1H NMR of 5a in CDCl$_3$
Figure S11. 300 MHz 1H NMR of 5e in CDCl$_3$

Figure S12. 300 MHz 1H NMR of 5f in CDCl$_3$