Studies Towards the Synthesis of (−)-Euonyminol: An Ireland-Claisen Rearrangement/Lactonization Cascade as a Key Step

Matthew J. Webber,a Matthew Weston,b Damian M. Grainger,a,b Stacy Lloyd,a Sarah A. Warren,a Lyn Powell,c Alexander Alanine,d Jeff Stonehouse,e Christopher S. Frampton,f Andrew J.P. Whitea and Alan C. Spivey,*a,b

aDepartment of Chemistry, South Kensington Campus, Imperial College, London SW7 2AZ, UK; bDepartment of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK; cAstraZeneca Process Research and Development, Charter Way, Silk Road Business Park, Macclesfield, Cheshire, SK10 2NA, UK; dLead Generation,PRBC-L.y, F. Hoffmann-La Roche, CH-4070, Basel, Switzerland; eAstraZeneca R and D, Charnwood, Dept of Medicinal Chemistry, Bakewell Road, Loughborough, Leics, LE11 5RH, UK; fPharmorphix® Solid State Services, Member of the Sigma-Aldrich Group, 250 Cambridge Science Park, Milton Road, Cambridge, CB4 0WE, UK.

Supporting Information — X-Ray Crystallography

The X-ray crystal structure of 7a.

Crystal data for 7a: C_{16}H_{21}NO_{3}, M = 275.34, monoclinic, P2₁, (no. 4), a = 8.8685(5), b = 7.4720(4), c = 10.7590(8) Å, β = 92.337(2)°, V = 712.36(8)Å³, Z = 2, Dc = 1.284 g cm⁻³, µ(Mo-Kα) = 0.088 mm⁻¹, T = 120 K, colourless fragment, Nonius FR591 Rotating anode, Nonius KappaCCD; 2877 independent measured reflections (R_{int} = 0.0384), F² refinement, R₁(obs) = 0.0447, wR₂(all) = 0.1087, 1384 independent observed reflections [|F_o| > 4σ(|F_o|), 2θ_{max} = 52.74°], 188 parameters. The absolute structure could not be determined from the X-ray diffraction data and so was assigned based on internal reference on C2, C3, C6, C7, C8, C10 and C11. CCDC 819413.

The X-ray crystal structure of 9a.

Crystal data for 9a: C_{23}H_{24}BrNO_{4}, M = 458.34, monoclinic, P2₁, (no. 4), a = 10.8450(1), b = 17.6459(2), c = 11.0083(2)Å, β = 90.12(7)°, V = 2106.65(5)Å³, Z = 4, Dc = 1.445 g cm⁻³, µ(Mo-Kα) = 1.980 mm⁻¹, T = 120 K, colourless prism, Nonius FR591 Rotating anode, Nonius KappaCCD; 8294 independent measured reflections (R_{int} = 0.0563), F² refinement,
\[R_1(\text{obs}) = 0.0353, \ wR_2(\text{all}) = 0.0872, \ 7649 \text{ independent observed reflections } [|F_o| > 4\sigma(|F_o|)], \ 2\theta_{\text{max}} = 54.74^\circ] \), 529 parameters. The absolute structure of 9a was determined by a combination of \(R \)-factor tests \([R_1^+ = 0.0353, \ R_1^- = 0.0754]\) and by use of the Flack parameter \([x^+ = -0.008(5), \ x^- = +0.991(13)]\), 3840 Friedel pairs. CCDC 819414.

The X-ray crystal structure of 15b.

Crystal data for 15b: C\(_{22}\)H\(_{34}\)BrNO\(_3\)Si, \(M = 468.50 \), triclinic, \(P-1 \) (no. 2), \(a = 8.33764(16), \ b = 11.1787(3), \ c = 14.0235(3) \) Å, \(\alpha = 87.990(2), \ \beta = 76.8660(19), \ \gamma = 69.337(2)^\circ, \ V = 1189.51(5) \) Å\(^3\), \(Z = 2, \ \ D_c = 1.308 \) g cm\(^{-3}\), \(\mu(\text{Mo-K\(\alpha\)}) = 1.799 \) mm\(^{-1}\), \(T = 173 \) K, colourless blocky needles, Oxford Diffraction Xcalibur 3 diffractometer; 7568 independent measured reflections \((R_{\text{int}} = 0.0379) \), \(F^2 \) refinement, \(R_1(\text{obs}) = 0.0330, \ wR_2(\text{all}) = 0.0868, \ 4899 \text{ independent observed absorption-corrected reflections } [|F_o| > 4\sigma(|F_o|), \ 2\theta_{\text{max}} = 65^\circ] \), 253 parameters. CCDC 819415.

The X-ray crystal structure of 20 (see manuscript footnote 13).

Crystal data for 20: C\(_{17}\)H\(_{25}\)BrO\(_4\), \(M = 373.28 \), monoclinic, \(P2_1 \), (no. 4), \(a = 8.00502(5), \ b = 10.12595(7), \ c = 11.24941(7) \) Å, \(\beta = 110.0133(7)^\circ, \ V = 856.795(10) \) Å\(^3\), \(Z = 2, \ \ D_c = 1.447 \) g cm\(^{-3}\), \(\mu(\text{Cu-K\(\alpha\)}) = 3.399 \) mm\(^{-1}\), \(T = 173 \) K, colourless columnar needles, Oxford Diffraction Xcalibur PX Ultra diffractometer; 3237 independent measured reflections \((R_{\text{int}} = 0.0215) \), \(F^2 \) refinement, \(R_1(\text{obs}) = 0.0185, \ wR_2(\text{all}) = 0.0500, \ 3195 \text{ independent observed absorption-corrected reflections } [|F_o| > 4\sigma(|F_o|), \ 2\theta_{\text{max}} = 143^\circ] \), 200 parameters. The absolute structure of 20 was determined by a combination of \(R \)-factor tests \([R_1^+ = 0.0185, \ R_1^- = 0.0340]\) and by use of the Flack parameter \([x^+ = +0.000(11), \ x^- = +1.007(11)]\). CCDC 819416.
Figure 1. The molecular structure of 7a showing the numbering scheme employed. Anisotropic atomic displacement ellipsoids for the non-hydrogen atoms are shown at the 50% probability level and hydrogen atoms are displayed as spheres of arbitrary radius.
Figure 2. View of the crystal packing of 7a down the c-axis of the unit cell.

Figure 3. Stereochemistry assignment from crystallography for 9a. Flack parameter = 0.000(5). The two independent molecules in the asymmetric unit have different ring conformations but same stereochemistry.
Figure 4. The molecular structure of molecule A of 9a showing the numbering scheme employed. Anisotropic atomic displacement ellipsoids for the non-hydrogen atoms are shown at the 50% probability level and hydrogen atoms are displayed as spheres of arbitrary radius.
Figure 5. The molecular structure of molecule B of 9a showing the numbering scheme employed. Anisotropic atomic displacement ellipsoids for the non-hydrogen atoms are shown at the 50% probability level and hydrogen atoms are displayed as spheres of arbitrary radius.
Figure 6. View of the crystal packing of 9a down the c-axis of the unit cell.

Figure 7. The molecular structure of 15b.
Figure 8. The molecular structure of 15b (50% probability ellipsoids).

Figure 9. The molecular structure of 20.
Figure 10. The molecular structure of 20 (50% probability ellipsoids).