Supporting Information
for DOI: 10.1055/s-0031-1289879
© Georg Thieme Verlag KG Stuttgart · New York 2011
Stereoselective γ-Olefination of Substituted Cyclobutenediones by Organocatalysis

Mallesh Beesu and Mariappan Periasamy*

School of Chemistry, University of Hyderabad, Central University P. O.,
Hyderabad–500 046, India.

mpsc@uohyd.ernet.in

Supporting Information

Contents:

General Procedure 1H and 13C NMR Spectral data of the compounds 3a-3l S2-S4
General Procedure 1H and 13C NMR Spectral data of the compounds 4a- 4d S5
Crystal data of 3a, 3k and 4a S6
1H and 13C NMR Spectra of the compounds 3a-3l S7-S30
1H and 13C NMR Spectra of the compounds 4a– 4d S31-S38
Experimental Section

General: \(^1\)H NMR (400 MHz) and \(^{13}\)C NMR (100 MHz) spectra were recorded in CDCl\(_3\) and TMS was used as reference (\(\delta = 0\) ppm). Melting points are uncorrected. IR spectra were recorded on a JASCO FT-5300 instrument with polystyrene as reference. Mass spectral analysis was carried out on VG 7070H mass spectrometer using EI technique at 70 eV. Cyclobutenediones were synthesized by reported procedures.\(^1\) The aldehydes and alcohols used in the reactions were supplied by Merck. Chromatographic purification was conducted by column chromatography using 100-200 mesh silica gel obtained from Acme Synthetic Chemicals, India.

Preparation of (E)-3-phenyl-4-styrylcyclobut-3-ene-1,2-dione \(3a\).

To a mixture of 3-methyl-4-phenyl-cyclobutene-1,2-dione (0.086 g, 0.5 mmol) and benzaldehyde (0.15 mL, 1.5 mmol) in 2.5 mL of MeOH solvent catalytic amount of pyrrolidine (8.2 µL, 0.1 mmol) was added. The reaction mixture was stirred for 1 h at room temperature. It was treated with 5 mL of saturated ammonium chloride solution and extracted with ethyl acetate (3×10 mL). The combined organic layer was dried over anhydrous Na\(_2\)SO\(_4\) and concentrated under reduced pressure. The residue was subjected to column chromatography (silica gel, hexane-EtOAc). Ethyl acetate (3%) in hexane eluted the (E)-3-phenyl-4-styrylcyclobut-3-ene-1,2-dione \(3a\).

\(3a\): Yield: 88%, 0.114 g; mp 148-150 °C (Lit.\(^2\) mp 160 °C); IR (KBr): \(\nu_{\text{max}}\) 1759 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.30 (d, \(J = 14.8\) Hz, 1H), 8.09-8.07 (m, 2H); 7.68-7.45 (m, 9H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 196.7, 195.9, 184.2, 183.4, 146.1, 134.9, 133.2, 131.4, 129.4, 129.2, 129.0, 128.7, 128.4, 115.2. MS (EI): \(m/z\) 261 (M+1). Anal. Calcd. for C\(_{18}\)H\(_{12}\)O\(_2\) C 83.06%, H 4.65% Found C 83.25%, H 4.59%

\(3b\). Yield: 85%, 0.125 g; mp 171-173 °C (Lit.\(^2\) mp 185 °C); IR (KBr): \(\nu_{\text{max}}\) 1759 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.25 (d, \(J = 15.6\) Hz, 1H), 8.09-8.06 (m, 2H), 7.62-7.56 (m, 5H), 7.48 (d, \(J = 15.6\) Hz, 1H), 7.43-7.41 (M, 2H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 196.6, 195.8, 183.8, 183.7,
144.4, 137.4, 133.4, 129.8, 129.5, 128.9, 128.4, 115.7. **MS (EI): m/z 295 (M+1). Anal. Calcd. for C\textsubtext{18}H\textsubtext{11}ClO\textsubtext{2} C 73.35%, H 3.76% Found C 73.51%, H 3.71%**

3c. Yield: 82%, 0.138 g; mp 166-168 °C; IR (KBr): ν\textsubscript{max} 1747 cm-1; 1H NMR (400 MHz, CDCl\textsubscript{3}): δ 8.26 (d, J = 15.6 Hz, 1H), 8.10-8.08 (m, 2H), 7.62- 7.54 (m, 7H), 7.51 (d, J = 15.6 Hz, 1H). 13C NMR (100 MHz, CDCl\textsubscript{3}): δ 196.5, 195.8, 183.85, 183.81, 144.5, 133.8, 133.3, 132.5, 129.9, 129.5, 128.9, 128.4, 125.8, 115.7. **MS (EI): m/z 339 (M+2). Anal. Calcd. for C\textsubtext{18}H\textsubtext{11}BrO\textsubtext{2} C 63.74%, H 3.27% Found C 63.85%, H 3.21%**

3d. Yield: 83%, 0.114g; mp 156-158 °C (Lit.2 mp 163 °C); IR (KBr): ν\textsubscript{max} 1751, 1736 cm-1; 1H NMR (400 MHz, CDCl\textsubscript{3}): δ 8.33 (d, J = 15.6 Hz, 1H), 8.12-8.10 (m, 2H), 7.61- 7.60 (m, 5H), 7.50 (d, J = 15.6 Hz, 1H), 7.29- 7.27 (m, 2H), 2.44 (s, 3H). 13C NMR (100 MHz, CDCl\textsubscript{3}): δ 196.8, 195.8, 184.4, 182.8, 146.3, 142.2, 133.0, 132.2, 129.9, 129.4, 129.1, 128.8, 128.3, 114.2, 21.6. **MS (EI): m/z 275 (M+1). Anal. Calcd. for C\textsubtext{19}H\textsubtext{14}O\textsubtext{2} C 83.19%, H 5.14% Found C 83.31%, H 5.08%**

3e. Yield: 85%, 0.122g; mp 118-120 °C; IR (KBr): ν\textsubscript{max} 1751 cm-1; 1H NMR (400 MHz, CDCl\textsubscript{3}): δ 8.32 (d, J = 15.6 Hz, 1H), 8.10-8.08 (m, 2H); 7.63- 7.57 (m, 5H), 7.48 (d, J = 15.6 Hz, 1H), 7.30-7.28 (m, 2H), 2.70 (q, J = 7.6 Hz, 2H), 1.27 (t, J = 7.6 Hz, 3H). 13C NMR (100 MHz, CDCl\textsubscript{3}): δ 196.8, 195.8, 184.4, 182.8, 146.4, 133.0, 132.5, 129.4, 129.1, 128.9, 128.7, 128.3, 114.3, 28.9, 15.1. **MS (EI): m/z 289 (M+1). Anal. Calcd. for C\textsubtext{20}H\textsubtext{16}O\textsubtext{2} C 83.31%, H 5.59% Found C 83.45%, H 5.51%**

3f. Yield: 78%, 0.118g; mp 126-128 °C; IR (KBr): ν\textsubscript{max} 1766 cm-1; 1H NMR (400 MHz, CDCl\textsubscript{3}): δ 8.32 (d, J= 15.6 Hz, 1H), 8.10- 8.08 (m, 2H), 7.63- 7.57 (m, 5H), 7.48 (d, J = 15.6 Hz, 1H), 7.33- 7.31 (m, 2H), 3.01- 2.91 (m, 1H), 1.28 (d, J = 6.8 Hz, 6H). 13C NMR (100 MHz, CDCl\textsubscript{3}): δ 196.8, 195.8, 184.4, 182.9, 153.1, 146.4, 133.0, 132.6, 129.4, 129.2, 128.9, 128.3, 127.3, 114.4, 34.2, 23.6. **MS (EI): m/z 303 (M+1). Anal. Calcd. for C\textsubtext{21}H\textsubtext{18}O\textsubtext{2} C 83.42%, H 6.00% Found C 83.35%, H 6.12%**
3g. Yield: 82%, 0.119g; mp 140-142 °C (Lit.2 mp 156 °C); IR (KBr): ν_{\max} 1763, 1751 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$): δ 8.31 (d, J = 15.6 Hz, 1 H), 8.09-8.08 (m, 2H), 7.67- 7.57 (m, 5H), 7.39 (d, J = 15.6 Hz, 1H), 6.97 (d, J = 8.4 Hz, 2H), 3.87 (s, 3H). 13C NMR (100 MHz, CDCl$_3$): δ 197.1, 195.7, 184.5, 182.1, 162.5, 146.2, 132.8, 130.8, 129.4, 129.3, 128.2, 127.7, 114.7, 113.0, 55.5. MS (El): m/z 291 (M+1). Anal. Calcd. for C$_{19}$H$_{14}$O$_3$ C 78.61%, H 4.86% Found C 78.45%, H 4.92%

3h. Yield: 80%, 0.122g; mp 136-138 °C IR (KBr): ν_{\max} 1763, 1743 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$): δ 8.28 (d, J = 15.6 Hz, 1H), 8.08-8.06 (m, 2H), 7.64-7.55 (m, 5H), 7.36 (d, J = 15.6 Hz, 1H), 6.94 (d, J = 8.4 Hz, 2H), 4.08 (q, J = 7 Hz, 2H), 1.44 (t, J = 7 Hz, 3H). 13C NMR (100 MHz, CDCl$_3$): δ 197.1, 195.7, 184.5, 182.0, 161.9, 146.3, 132.8, 130.8, 129.4, 129.3, 128.2, 127.5, 115.2, 112.8, 63.85, 14.7. MS (El): m/z 303 (M-1). Anal. Calcd. for C$_{20}$H$_{16}$O$_3$ C 78.93%, H 5.30% Found C 78.81%, H 5.41%

3i. Yield: 90%, 0.136g; mp 215-217 °C (Lit.2 mp 227 °C); IR (KBr): ν_{\max} 1755, 1728cm $^{-1}$; 1H NMR (400 MHz, CDCl$_3$): δ 8.28 (d, J = 15.6 Hz, 1H), 8.08- 8.06 (m, 2H); 7.58-7.54 (m, 5H), 7.22 (d, J = 15.6 Hz, 1H), 6.67(d, J = 9.2 Hz, 2H), 3.06 (s, 6H). 13C NMR (100 MHz, CDCl$_3$): δ 197.7, 195.3, 184.5, 179.5, 152.6, 147.5, 132.2, 131.2, 129.8, 129.2, 127.9, 122.7, 111.9, 109.8, 40.0. MS (El): m/z 304 (M+1). Anal. Calcd. for C$_{20}$H$_{17}$NO$_2$ C 79.19%, H 5.65% Found C 79.10%, H 5.61%

3j. Yield: 91%, 0.149g; mp 140-142 °C; IR (KBr): ν_{\max} 1768, 1747 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$): δ 8.30 (d, J = 15.6 Hz, 1 H), 8.09 (d, J = 8 Hz, 2H), 7.79 (d, J = 8 Hz, 2H), 7.70 (d, J = 8 Hz, 2H), 7.62-7.58 (m, 4H). 13C NMR (100 MHz, CDCl$_3$): δ 196.3, 195.8, 184.6, 183.4, 143.6, 138.2, 133.6, 132.3 (q, J = 32 Hz), 129.6, 128.8, 128.7, 128.6, 126.1 (q, J = 4 Hz), 123.7 (q, J = 271 Hz), 117.4. MS (El): m/z 329 (M+1). Anal. Calcd. for C$_{19}$H$_{11}$F$_3$O$_2$ C 69.51%, H 3.38% Found C 69.38%, H 3.45%

3k. Yield: 85 %, 0.117 g; mp 96-98 °C; IR (KBr): ν_{\max} 2968, 1765 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$): δ 8.02 (s, 1H), 7.89-7.86 (m, 2H), 7.56-7.36 (m, 8H), 2.31 (s, 3H). 13C NMR (100 MHz, CDCl$_3$): δ 196.1, 195.7, 190.2, 186.2, 141.6, 135.3, 132.3, 130.3, 129.3, 128.9, 128.8,
128.6, 128.0, 127.1, 16.9. MS (EI): m/z 275 (M+1). Anal. Calcd. for C_{19}H_{14}O_{2} C 83.19%, H 5.14% Found C 83.31%, H 5.08%

3l. Yield: 80 %, 0.121g ;(semi solid); IR (KBr): \nu_{\text{max}} 2962, 2934, 1786, 1768 cm^{-1}; 1H NMR (400 MHz, CDCl\textsubscript{3}): \delta 7.96-7.93 (m, 2H), 7.76 (s, 1H), 7.58-7.38 (m, 8H), 2.81 (t, J =7.6 Hz, 2H), 1.47-1.37 (m, 2H), 0.81 (t, J =7.2 Hz, 3H). 13C NMR (100 MHz, CDCl\textsubscript{3}): \delta 196.5, 196.0, 191.5, 186.9, 139.2, 135.1, 133.0, 132.6, 129.7, 129.0, 128.7, 128.4, 128.3, 30.4, 22.1, 13.6. MS (EI): m/z 303 (M+1). Anal. Calcd. for C_{21}H_{18}O_{2} C 83.42%, H 6.00% Found C 83.31%, H 5.92%

Preparation of 3,4-bis((E)-1-phenylprop-1-en-2-yl)cyclobutene-1,2-dione 4a

To a mixture of 3,4-diethylcyclobutenedione (0.069 g, 0.5 mmol) and benzaldehyde (0.2 mL, 2 mmol) in 3 mL of MeOH solvent catalytic amount of pyrrolidine (8.2 \mu L, 0.1 mmol) was added. And the reaction mixture was stirred for 1.5 h at roomtemperature. The reaction mixture was treated with 5 mL of saturated ammonium chloride solution and extracted with ethyl acetate (3x10 mL). The combined organic layer was dried over anhydrous Na\textsubscript{2}SO\textsubscript{4} and concentrated under reduced pressure. The residue was subjected to column chromatography (silica gel, hexane-EtOAc). Ethyl acetate (3%) in hexane eluted the 3,4-bis((E)-1-phenylprop-1-en-2-yl)cyclobutene-1,2-dione 4a

4a. Yield: 85 %, 0.133g; mp 118- 120 °C; IR (KBr): \nu_{\text{max}} 1743 cm^{-1}; 1H NMR (400 MHz, CDCl\textsubscript{3}): \delta 7.74 (s 2H), 7.54-7.39 (m, 10H), 2.37 (s, 6H). 13C NMR (100 MHz, CDCl\textsubscript{3}): \delta 196.1, 189.7, 140.7, 135.6, 130.3, 129.2, 128.7, 127.2, 17.4. MS (EI): m/z 315 (M+1). Anal. Calcd. for C_{22}H_{18}O_{2} C 84.05%, H 5.77% Found C 84.18%, H 5.71%

4b. Yield: 82 %, 0.140 g; mp 156- 158 °C; IR (KBr): \nu_{\text{max}} 2922, 1745 cm^{-1}; 1H NMR (400 MHz, CDCl\textsubscript{3}): \delta 7.74 (s 2H), 7.46 (d, J = 8 Hz, 4H), 7.27 (d, J= 8 Hz, 4H), 2.42 (s, 6H), 2.38 (s, 6H). 13C NMR (100 MHz, CDCl\textsubscript{3}): \delta 196.2, 189.3, 140.8, 139.6, 132.8, 130.4, 129.4, 126.3, 21.5, 17.6. MS (EI): m/z 343 (M+1). Anal. Calcd. for C_{24}H_{22}O_{2} C 84.18%, H 6.48% Found C 84.05%, H 6.55 %
4c. Yield: 75%, 0.140 g; mp 164–166 °C; IR (KBr): νmax 2961, 1739 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.72 (s, 2H), 7.52 (d, J = 8.8 Hz, 4H), 6.96 (d, J = 8.8 Hz, 4H), 3.86 (s, 6H), 2.38 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 196.2, 188.9, 160.4, 140.5, 132.3, 128.5, 125.0, 114.2, 55.4, 17.8. MS (EI): m/z 373 (M⁻1). Anal. Calcd. for C₂₄H₂₂O₄: C 76.99%, H 5.92% Found C 76.88%, H 5.97%

4d. Yield: 70%, 0.140 g; mp 156–158 °C; IR (KBr): νmax 2922, 1743 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.74 (s, 2H), 7.51 (d, J = 8 Hz, 4H), 6.72 (d, J = 8 Hz, 4H), 3.05 (s, 12H), 2.37 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 196.4, 187.5, 150.7, 141.3, 132.6, 124.0, 122.7, 111.7, 40.1, 18.2. MS (EI): m/z 401 (M+1). Anal. Calcd. for C₂₆H₂₈N₂O₂: C 77.97%, H 7.05%, N 6.99% Found C 77.91%, H 7.15%, N 6.85%

X-ray Crystallography:

Crystal Data: For compound 3a: Molecular formula: C₁₈H₁₂O₂, MW = 260.28, Orthorhombic, space group: Pbca, a = 14.163(3) Å, b = 8.1161(17) Å, c = 23.806(5) Å, α = 90.000, β = 90.000, γ = 90.000, V = 2736.6(10) Å³, Z = 8, ρ = 1.263 Mg M⁻³, μ = 0.082 mm⁻¹, T = 298(2) K. Of the 14223 reflections collected, 2660 were unique (Rint = 0.0507). Refinement on all data converged at Rf = 0.0531, wr2 = 0.1023.

Crystal Data: For compound 3k: Molecular formula: C₁₉H₁₄O₂, MW = 274.30, monoclinic, space group: P2₁, a = 12.878(2) Å, b = 14.943(3) Å, c = 7.2161(12) Å, α = 90.000, β = 93.491(3), γ = 90.000, V = 1386.0(4) Å³, Z = 4, ρ = 1.315 Mg M⁻³, μ = 0.084 mm⁻¹, T = 100(2) K. Of the 12898 reflections collected, 2448 were unique (Rint = 0.0726). Refinement on all data converged at Rf = 0.0785, wr2 = 0.1635.

Crystal Data: For compound 4a: Molecular formula: C₂₂H₁₈O₂, MW = 314.36, Orthorhombic, space group: Pbca, a = 12.851(4) Å, b = 13.648(5) Å, c = 18.969(6) Å, α = 90.000, β = 90.000, γ = 90.000, V = 3327.0(19) Å³, Z = 8, ρ = 1.255 Mg M⁻³, μ = 0.079 mm⁻¹, T = 100(2) K. Of the 32135 reflections collected, 3251 were unique (Rint = 0.0610). Refinement on all data converged at Rf = 0.0614, wr2 = 0.1391.

\(^1 \text{HNMR Spectrum of the compound 3a} \)
13C NMR spectrum of the compound 3a
1HNMR spectrum of the compound 3b
13C NMR spectrum of the compound 3b
1HNMR spectrum of the compound 3c
$^{13}\text{C} \text{ NMR spectrum of the compound 3c}$
1HNMR spectrum of the compound 3d
13CNMR spectrum of the compound 3d
1HNMR spectrum of the compound 3e
13C NMR spectrum of the compound 3e
1HNMR spectrum of the compound 3f
13CNMR spectrum of the compound 3f
1H NMR spectrum of the compound 3g
13CNMR spectrum of the compound 3g
\(^1\)HNMR spectrum of the compound 3h
13CNMR spectrum of the compound 3h
1H NMR spectrum of the compound 3i
13CNMR spectrum of the compound 3i
1H NMR spectrum of the compound 3j
13CNMR spectrum of the compound 3j
1H NMR spectrum of the compound 3k
13CNMR spectrum of the compound 3k
1HNMR spectrum of the compound 3l
13CNMR spectrum of the compound 3l
1HNMR spectrum of the compound 4a
13CNMR spectrum of the compound 4a
1HNMR spectrum of the compound 4b
13CNMR spectrum of the compound 4b
1H NMR spectrum of the compound 4c
13CNMR spectrum of the compound 4c
$^1\text{H} \text{ NMR spectrum of the compound 4d}$
13CNMR spectrum of the compound 4d