Supporting Information
for DOI: 10.1055/s-0031-1289910
© Georg Thieme Verlag KG Stuttgart · New York 2011
Experimental Section

General techniques: Flash column chromatography was performed on Merck silica gel 60 (0.040-0.063mm), following the procedure indicated on J. Org. Chem. 1978, 43(14), 2923-2925. Reactions were monitored by TLC on Merck silica gel 60 F254 aluminium sheets, spots being developed with 5%sulfuric acid in MeOH or with 2% KMnO4 and 2% K2CO3 aq. soln. Carborane-containing compounds were selectively visualized using 1%PdCl2 in HCl 1N, which caused the slow formation of a gray spot. Solvents were dried and stored on activated molecular sieves. Organic solutions were concentrated by rotatory evaporation below 45 °C at approximately 20 mmHg. All reactions (if not specifically containing water as reactant, solvent or co-solvent) were performed under Ar atmosphere, in oven or microwave-oven dried glassware. Unless noted otherwise, 1H-NMR spectra were recorded in CDCl3 at 300 MHz (JEOL ECP300), 13C-NMR spectra were recorded at 75 MHz (JEOL ECP300), with chloroform (7.27 ppm 1H, 77.20 ppm 13C) as internal reference and 11B-NMR spectra were recorded in CDCl3 at 96.2 MHz (JEOL ECP300) with BF3·OEt2 as external standard using quartz NMR tubes. Chemical shifts δ are given in ppm; multiplicities are indicated as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and br (broad); coupling constants (J) are reported in Hz. Decaborane (B10H14) was purchased from Aldrich. WARNING: this highly toxic compound forms impact-sensitive mixtures with several materials, therefore the following experiments must be conducted with extreme caution.

General procedure: 1-[2-(Triisopropylsilyloxy)ethyl]-o-carborane (2): bis(acetonitrile)-decaborane complex was prepared by refluxing decaborane (3.945g, 32.281mmol) in 50mL of anhydrous acetonitrile for 2h. The complex (a light-yellow solid) was isolated by evaporation of the acetonitrile under vacuum. (But-3-ynyloxy)triisopropylsilane 1 (6.091g, 26.901mmol) in 10mL of anhydrous toluene was added to a solution of decaborane complex in anhydrous toluene (50mL) and stirred at reflux for 3h. Methanol (20mL) was added to destroy the excess of decaborane and refluxed for 1h. After evaporation of the volatiles, flash column chromatography (petroleum ether/ethyl acetate 99:1) gave o-carborane 2 as an oil (6.304g, 68% yield). 1H NMR (CDCl3): δ 3.99 (br s, 1H, CHcarborane), 3.73 (t, 2H, J=6.06Hz, CH2O), 2.42 (t, 2H, J=6.00Hz, CH2Ccarborane), 0.99-1.09 (m, 21H, CH3 and CHSi). 11B NMR (CDCl3): δ -2.5 (1B), -7.4 (1B), -13.0 (8B).

Elemental analysis calcd for C13H36B10OSi: C, 45.31%; H, 10.53%; Si, 8.15%. Found: C, 45.15%; H 10.67%; Si 7.97%.

2-(3-Hydroxypropyl)-1-[2-(Triisopropylsilyloxy)ethyl]-o-carborane (3): in a dry two necked round bottom flask was dissolved 2 (1g, 2.902mmol) in anhydrous THF (29mL) and the solution was cooled to 0°C. n-Butyl lithium (3.08mL, 4.93 mmol, 1.6M in hexane) was added dropwise and the solution was stirred for 30min at room temperature. The color of the mixture became red. Trimethylene oxide (0.38 mL, 5.80 mmol) was added slowly and the reaction mixture was warmed to 40°C for 1h. The reaction was quenched with HCl 1N and diluted with 100mL EtOAc. The solution was washed with 3x80mL H2O, dried over Na2SO4, and the solvent was removed in vacuo. The resulting residue was then purified by flash chromatography (petroleum ether/ethyl acetate 85:15) afforded a colorless oil (0.947g, 81% yield). 1H NMR (CDCl3): δ 3.68 (t, 2H, J=5.5 Hz, CH2O), 2.64 (t, 2H, J=6.1 Hz, CH2OSi), 2.44 (t, 2H, J=6.0 Hz, CH2Ccarborano), 2.30 (t, 2H, J=8.2 Hz, CH2Ccarborano), 1.84-1.78 (m, 2H, CH2CH3OH), 0.99-1.09 (m, 21H, CH3 and CHSi). 11B NMR (CDCl3): δ -4.8 (2B), -11.0 (8B).

Elemental analysis calcd for C16H42B10O2Si: C, 47.72%; H, 10.51%. Found: C, 47.02%; H 10.84%.
2-(3-azidopropyl)-1-(3-hydroxypropyl)-o-carborane (4): a solution of 3 (0.536 g, 1.39 mmol) in dry CH$_2$Cl$_2$ (14mL) was stirred at room temperature, under argon. To this solution, triethylamine (0.96mL, 6.93mmol) was added, then methanesulfonyl chloride (0.323mL, 4.158mmol) at 0°C. The reaction mixture was stirred at 0°C for 1.5h, quenched with saturated NaHCO$_3$ and diluted with EtOAc. The solution was washed with H$_2$O (80mL), HCl 1N (80mL), 2x80mL H$_2$O, dried over Na$_2$SO$_4$ and the solvent was removed under reduced pressure. The crude was dissolved in dry toluene (12mL) and tetrabutylammonium azide (0.704g, 2.475mmol) in dry toluene (7.5mL) was added. The reaction was refluxed for 1.5h and monitored by TLC (petroleum ether/EtOAc 97:3). The solvent was evaporated in vacuo and the residue was diluted with EtOAc, washed with 3x80mL H$_2$O and dried with Na$_2$SO$_4$. Crude 2-(3-azidopropyl)-1-[2-(2,3,4,6-tetra-O-acetyl-lactosyl-(1→4)-2,3,6-tri-O-acetyl-β-D-glucopyranosyloxy)ethyl]-2-(3-azidopropyl)-o-carborane (0.385g, 0.90mmol) was dissolved in THF (6.5mL), to a solution was added tetrabutylammonium fluoride (1M solution in THF, 2.7mL, 2.7mmol). The reaction was cooled to 0°C and CH$_2$COOH (0.154mL, 2.7mmol) was added dropwise, the solution was then warmed to room temperature. After the reaction completion (30min), it was quenched with saturated NaHCO$_3$, diluted with EtOAc (300mL) and the organic layer was washed with H$_2$O (200mL), dried over Na$_2$SO$_4$ and finally purified with flash chromatography (petroleum ether/EtOAc 7:3) to afford 5 as white solid (0.311g, 82% yield over three steps); 1H NMR (CDCl$_3$): δ 3.82 (t, 2H, J=6.87Hz, CH$_2$OH), 3.35 (t, 2H, J=6.33Hz, CH$_2$N$_3$), 2.62 (s, br, 1H, OH), 2.44 (t, 2H, J=6.9 Hz, CH$_2$C-carborane), 2.29 (dd, 2H, J=8.25 Hz, 12.1 Hz, CH$_2$C-carborane), 1.84-1.78 (m, 2H, CH$_2$C$_2$N$_3$). 13C NMR (CDCl$_3$): δ 79.6 (s, C-carborane), 88.8 (s, C-carborane), 61.5 (t, CH$_2$OH), 50.5 (t, CH$_2$N$_3$), 32.2 (t), 31.7-29.0 (t, CH$_2$C-carborane), 11B NMR (CDCl$_3$): δ -5.5 (2B), -11.0 (8B).

Elemental analysis calcd for C$_{33}$H$_{52}$B$_{10}$N$_8$O$_{18}$: C, 30.98%; H, 7.80%; N, 15.48%. Found: C, 30.47%; H 7.95%; N, 15.33%.

1-[2-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl-(1→4)-2,3,6-tri-O-acetyl-β-D-glucopyranosyloxy)ethyl]-2-(3-azidopropyl)-o-carborane (5): the compound 4 (0.119g, 0.438mmol) was stirred with peracetylated lactosyl trichloroacetimidate (0.616g, 0.789mmol) and MS 4Å in dry CH$_2$Cl$_2$ (4.5mL) at room temperature. Then the solution was cooled to 0°C and freshly distilled BF$_3$-Et$_2$O (1M solution in CH$_2$Cl$_2$, 0.044mL, 0.044mmol) was added slowly. The reaction was stirred for 1h at 0°C, quenched with saturated NaHCO$_3$ and diluted with EtOAc (50mL), washed with NaHCO$_3$ (40mL), 3x40mL H$_2$O, dried over Na$_2$SO$_4$ and purified with flash chromatography (petroleum ether/ EtOAc 55:45) afforded a white foam (0.315g, 81% yield); 1H NMR (CDCl$_3$): δ 5.33 (d, 1H, J=2.76Hz, H-4'), 5.16 (t, 1H, J=9.33Hz, H-3'), 5.08 (dd, 1H, J=7.98, 10.44Hz, H-2'), 4.92 (dd, 1H, J=3.3, 10.44Hz, H-3'), 4.86 (dd, 1H, J=7.98, 9.63Hz, H-2), 4.49-4.43 (m, 3H, H-1, H-1', H-6a), 4.11-4.06 (m, 3H, H-6b-H6'a-b), 3.99-3.87 (m, 1H, CH$_2$O), 3.85 (t, 1H, J=7.02Hz, H-5'), 3.76 (t, 1H, J=9.33Hz, H-4), 3.61-3.56 (m, 2H, H-5, CH$_2$O), 3.34 (dt, J= 3.57Hz, 2H, CH$_2$N$_3$), 2.44 (t, 2H, J=5.79, CH$_2$C-carborane), 2.24-2.19 (m, 2H, CH$_2$C-carborane), 2.12-1.91 (m, 21H, CH$_3$), 1.80-1.72 (m, 2H, CH$_2$CH$_2$N$_3$). 13C NMR (CDCl$_3$): δ 170.4-169.1 (cluster of s, C=O), 101.2, 100.7 (2t, C1, C1'), 79.4 (s, C-carborane), 78.0 (s, C-carborane), 76.2, 72.8, 72.6, 71.6, 71.0, 70.7, 69.1, 66.6 (8d, CH$_2$actone), 68.8 (t, CH$_2$O), 62.0, 60.8 (2t, C6, C6'), 50.4 (t), 31.5, 29.8 (2t, CH$_2$C-carborane), 29.0 (t, CH$_2$N$_3$), 20.9-20.8 (cluster of q, COCH$_3$). 11B NMR (CDCl$_3$): δ -5.5 (2B), -11.0 (8B).

Elemental analysis calcd for C$_{33}$H$_{52}$B$_{10}$N$_8$O$_{18}$: C, 44.54%; H, 6.23%; N, 4.72%. Found: C, 44.04%; H 6.02%; N, 4.87%.

1-[2-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl-(1→4)-2,3,6-tri-O-acetyl-β-D-glucopyranosyloxy)ethyl]-2-[3-(5-carbonylaminopropyl-N-Boc-glutamic acid 1-benzylester)propyl]-o-carborane (6): to a solution of 5
(0.099g, 0.111mmol) and Boc-L-glutamic acid 1-benzyl ester (0.056, 0.166mmol) in CH₂Cl₂ (5mL) was added tributyl phosphate (0.070mL, 0.277mmol), after stirring at room temperature for 1h, N-(3-Dimethylaminopropyl)-N'-ethyl carbodiimide hydrochloride (0.043 g, 0.22 mmol) was added. The mixture was stirred at room temperature for 2h and was quenched with HCl 1N. The solution was diluted with EtOAc (50mL), washed with HCl (80mL), water (80mL) and brine (80mL), dried over Na₂SO₄ and concentrated in vacuo. The residue was purified on flash chromatography (petroleum ether/EtOAc 25.75+0.2%isopropanol) to give a white foam (0.088g, 67% yield); ¹H NMR (CDCl₃): δ 7.38-7.31 (m, 5H, Ph), 6.47 (br t, 1H, NH=C=O), 5.38 (d, 1H, J=8.0 Hz, NHBoc), 5.33 (d, 1H, J=3.4 Hz, H-4'), 5.17 (t, 1H, J=9.9 Hz, H-3'), 5.14 (s, 2H, CH₃Ph), 5.09 (dd, 1H, J=7.7, 10.4 Hz, H-2'), 4.94 (dd, 1H, J=3.4, 10.4 Hz, H-3'), 4.84 (dd, 1H, J=7.9, 9.6 Hz, H-2'), 4.49-4.44 (m, 2H, H-1',H-6a), 4.40 (d, 1H, J=7.9 Hz, H-1), 4.26 (dt, 1H, CHNH), 4.14-4.04 (m, 3H, H-6b, H-6'a-b), 3.86 (t, 1H, J=6.9 Hz, H-5'), 3.84-3.75 (m, 2H, H-4, CH₂O), 3.58 (m, 1H, H-5), 3.44 (m, 1H, CH₃O), 3.23 (d, 2H, CH₂NH), 2.20-2.16 (m, 4H, CH₂C₆H₄), 2.12-1.91 (m, 25H, CH₃C=O, CH₂C₆H₄, CH₂CH₂NH, CH₂CH₂NH), 1.80-1.72 (m, 2H, CH₂CH₂NH), 1.42 (s, 9H, CH₃ t-Bu). ¹³C NMR (CDCl₃): δ 172.1-170.2 (cluster of s, C=O), 156.01 (s, C=O Boc), 135.30 (s, C₆H₄), 128.7-128.4 (cluster of d, CH Ar), 101.2, 100.7 (2d, C₁-C₁'), 80.4 (s, Boc), 79.4 (s, C₆H₄), 79.2 (s, C₆H₄), 76.3, 72.9, 72.5, 71.7, 71.0, 70.7, 69.1, 66.6 (8d, CH₂lactose), 68.8 (t, CH₂O), 67.3 (t, CH₂Ph), 62.0, 60.7 (2t, C₆, C₆'), 60.5 (t, CH₂NHCO), 53.2 (d, CHNH), 32.4 (t), 38.7 (t, CH₂CH₂NH), 31.5, 29.16 (2t, CH₂C₆H₄), 29.9 (t), 28.4 (q, CH₃ t-Bu), 21.1-20.6 (cluster of q, COCH₃). ¹¹B NMR (CDCl₃): δ -5.5 (2B), -11.0 (8B).

Elemental analysis calcd for C₅₀H₇₀B₁₀N₂O₂₃: C, 50.75%; H, 6.64%; N, 2.37%. Found: C, 50.63%; H 6.79%; N, 2.04%.

General procedure for deacetylation reaction: to a stirred 0.05M solution of MeONa in dry MeOH (10mL) under nitrogen was added the protected glycosyl carboranes (7/9/10) (200mg). After stirring for 1-3h at room temperature the reaction was neutralized by addition of Amberlite® IR-120 (H⁺-form) ion exchange resin (carefully washed with MeOH). The reaction was filtered and concentrated under reduced pressure afforded crude glycosyl carborane.

1-[2-(β-D-galactopyranosyl-(1→4)-β-D-glucopyranosyloxy)ethyl]-2-[3-(5-carbonylaminopropyl-N-Boc-glutamic acid)propyl]-ο-carborane (7): compound 6 (0.063g, 0.052 mmol) was dissolved in MeOH (0.9mL) and EtOAc (0.200mL). Pd/C (15mg) was added under argon, the reaction was stirred vigorously at room temperature for 3h under a hydrogen atmosphere. The mixture was filtered on a short pad of Celite and washed with MeOH/CH₂Cl₂ 1:1. The solvent was evaporated under reduced pressure, the crude (0.060g, 0.071 mmol) was coevaporated with toluene and used for the deacetylation reaction (see *general procedure*). The residue was purified by flash chromatography (CH₃CN/H₂O 85:15), to give 7 as a white foam (0.026g, 62% yield); ¹H NMR (CD₃OD): δ 4.36 (d, 1H, J=7.0 Hz, H-1), 4.28 (d, 1H, J=7.6 Hz, H-1'), 3.97-3.15 (m, 17H, CH₂lactose, H-6a-b, H-6'a-b, CH₂O, CH₂NH, CHNH), 2.42 (t, 2H, J=8.0 Hz, CH₂C₆H₄), 2.07-2.04 (m, 4H, CH₂C₆H₄, CH₂C₆H₄, CH₂C₆H₄, CH₂C₆H₄), 1.84-1.68 (m, 2H, CH₂), 1.43 (s, 9H, CH₃ Boc). ¹³C NMR (CD₃OD): δ 174.5 (s, 2C, COOH, NH=C=O), 156.4 (s, C=O Boc), 103.7, 102.7 (2d, C₁-C₁'), 80.3 (s, C₆H₄), 80.0 (s, C₆H₄), 79.0 (s, Boc), 79.3, 75.8, 75.2, 75.1, 73.5, 73.4, 71.2, 69.0 (8d, CH₂lactose), 68.1 (t, CH₂O), 61.2, 60.6 (2t, C₆-C₆'), 43.3 (t, CH₂C₆H₄), 38.3 (t, CH₂NH), 32.1 (t), 31.5, 29.8 (2t, CH₂C₆H₄), 29.5 (t), 27.5 (q, t-Bu) (Cα of amino acid hidden under CD₃OD signal). ¹¹B NMR (CD₃OD): δ -5.5 (2B), -11.0 (8B).
Elemental analysis calcd for C_{29}H_{32}B_{10}N_{2}O_{16}: C, 43.60%; H, 7.32%; N, 3.51%. Found: C, 42.98%; H 7.58%; N, 3.67%.

1-[2-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl-(1→4)-2,3,6-tri-O-acetyl-β-D-glucopyranosyloxy)ethyl]-2-[3-(5-Dimethylaminonaphthalene-1-sulfonylamo)propyl]-o-carborane (8): to a solution of 5 (0.066g, 0.0742mmol) in ethanol (0.5mL), under argon, were added Pd/C (0.030g) and HCl 1N (0.075mL, 0.075mmol). The resulting mixture was stirred vigorously at room temperature for 4h under a hydrogen atmosphere. The mixture was filtered on a short pad of Celite and washed with methanol and CH_{2}Cl_{2}. The solvent was evaporated under reduced pressure, the crude (0.064g, 0.0711mmol) was coevaprated with toluene and used immediately.

The compound was dissolved in CH_{2}Cl_{2} (0.650mL), then was added 5-dimethylaminonaphthalene-1-sulfonyle chloride (0.019g, 0.0711mmol) and triethylamine (0.030mL, 0.2133mmol). The reaction mixture was stirred over night at room temperature, the solution was yellow-green. The solvent was removed in vacuo and the residue was purified by flash chromatography (toluene/ethyl acetate 7:3) to obtain a fluorescent yellow-green solid (0.042g, 52% yield).

\[^{1}H\text{ NMR (CDCl}_{3}, 50°C): 8.69 (d, 1H, J=8.6 Hz, CH}_{2}\text{ar}, 8.39 (d, 1H, J=8.6 Hz, CH}_{2}\text{ar}, 8.23 (dd, 1H, J=1.2, 7.3 Hz, CH}_{2}\text{ar}, 7.60-7.53 (m, 2H, CH}_{2}\text{ar}, 7.29 (d, 1H, J=7.9, CH}_{2}\text{ar}, 5.63 (br s, 1H, NH), 5.31 (d, 1H, J=3.1 Hz, H-4'), 5.18 (t, 1H, J=9.5 Hz, H-3), 5.09 (dd, 1H, J=7.9, 10.4 Hz, H-2'), 4.94 (dd, 1H, J=3.4, 10.4 Hz, H-3'), 4.91 (dd, 1H, J=8.0, 9.6 Hz, H-2), 4.60-4.42 (m, 3H, H-1-H-1',H-6a), 4.15-4.02 (m,3H, H-6b, 2-H6'), 3.89-3.83 (m, 3H, H-4, H-5', CH}_{3}\text{O}), 3.61-3.56 (m, 2H, H-5, CH}_{2}\text{NCH}_{3}, 2.95-2.89 (m, 4H, CH}_{2}\text{NCH}_{3}, 2.38 (t, 2H, J=8.5 Hz, CH}_{2}\text{C}_{2}\text{carborane}, 2.18-1.93 (m, 21H, COCH}_{3}, 1.49-1.39 (m, 2H, CH}_{2}\text{CH}_{2}\text{NH})\]
1-[2-(β-D-galactopyranosyl-(1→4)-β-D-glucopyranosyloxy)ethyl]-2-(3-azidopropyl)-o-carborane (10): Compound 5 (0.100g, 0.112 mmol) was deacetylated according to the general procedure for the deacetylation reaction. The crude was purified by flash chromatography (CH$_2$Cl$_2$/MeOH 9:1) to give a white solid (0.052g, 78% yield); 1H NMR (CD$_3$OD): δ 4.34 (d, 1H, $J=7.3$ Hz, H-1), 4.26 (d, 1H, $J=7.6$ Hz, H-1'), 3.91-3.19 (m, 14H, CH$_2$ lactose, 2H-6, 2H-6', CH$_2$O), 3.21 (t, 2H, $J=8.0$ Hz, CH$_2$N$_3$), 2.63 (t, 2H, $J=7.0$ Hz, CH$_2$carborane) 2.42-2.37 (m, 2H, CH$_2$carborane), 1.84-1.74 (m, 2H, CH$_2$CH$_2$N$_3$). 13C NMR (CD$_3$OD): 175.1 C=O 103.5, 102.7 (2d, C1-C1'), 80.8 (s, C carborane), 79.9, 75.1, 75.0, 73.5, 73.3, 71.2, -69.0 (8d, CH$_2$ lactose), 68.0 (t, CH$_2$O), 61.2, 60.6 (2t, C6, C6'), 48.3 (t), 31.7, 31.5 (2t, CH$_2$carborane), 29.8 (t, CH$_2$N$_3$). 11B NMR (CD$_3$OD): δ -5.5 (2B), -11.0 (8B).

Elemental analysis calcd for C$_{19}$H$_{41}$B$_{10}$N$_{3}$O$_{11}$: C, 38.31%; H, 6.94%; N, 7.05%. Found: C, 38.65%; H, 7.09%; N, 7.27%.

1-[2-(β-D-galactopyranosyl-(1→4)-β-D-glucopyranosyloxy)ethyl]-2-[3-(4-carboxamido-2,2,6,6-tetramethylpiperidine-1-oxyl)propyl)-o-carborane (11): Pd/C (0.020g) was added to a solution of 10 (0.035g, 0.0588mmol) in MeOH (1mL) and was stirred vigorously at room temperature for 1h under a hydrogen atmosphere. The mixture was passed through Celite pad, washed with methanol and concentrated in vacuo. The crude was coevaporated with toluene and was dissolved immediately in dry MeOH, under argon, 4-carboxy-2,2,6,6-tetramethylpiperidide-1-oxyl (0.014g, 0.0706mmol) was added and was stirred at room temperature for 30 min. Sequentially were added N-(3-Dimetyhlaminopropyl)-N'-ethyl carbodiimide hydrochloride (0.034g, 0.1764mmol) and triethylamine (3 drops), the reaction was stirred at room temperature, over night. After evaporation of the volatiles, flash column chromatography (ethyl acetate/methanol/water 78:20:2) gave 11 as a red-brown foam (0.022g, 52% yield); for characterization, the nitroxide was reduced to the corresponding hydroxyl derivative with Na$_2$S$_2$O$_4$ in DMSO-d6/D$_2$O. 1H NMR (DMSO-d6, 70°C): δ 4.23 and 4.21 (2d, 2H, $J=7.3$ and 7.9 Hz, H-1, H-1'), 3.89-3.30 (m, 14H, H-2, H-3, H4, H5, 2H-6, H-2', H-3', H4', H5', 2H-6', CH$_2$O), 3.04 (dd, 2H, CH$_2$), 2.66 (broad tt, CHC=O), 2.50-2.48 (m, 2H, CH$_2$carborane), 2.21 (t, 2H, $J=8.0$ Hz, CH$_2$carborane), 1.72-1.49 (m, 6H, CH$_2$CH$_2$NH, CH$_2$CH), 1.32 (s, 6H, CH$_3$), 1.29 (s, 6H, CH$_3$). 13C NMR (DMSO-d6, 40°C): δ 175.1 C=O 103.5, 102.7 (2d, C1-C1'), 80.8 (s, Ccarborane), 78.6 (s, Ccarborane), 75.6, 75.1, 74.9, 74.9, 73.2, 73.1, 71.0, 68.6 (8d, CH$_2$ lactose), 67.7 (t, CH$_2$O), 61.0, 60.5 (2t, C6-C6'), 56.2 (s, C-CH$_3$), 38.0 (t, CH$_2$NH), 37.7 (t, CH$_2$CH), 34.7 (d, CHC=O), 34.3, 31.9 (2t, CH$_2$carborane), 30.0 (q, CH$_3$), 29.4 (t), 24.3 (t, CH$_3$). 11B NMR (DMSO-d6): δ -5.5 (2B), -11.0 (8B).

Elemental analysis calcd for C$_{29}$H$_{59}$B$_{10}$N$_2$O$_{13}$: C, 46.32%; H, 7.91%; N 3.73. Found: C, 45.96%; H 8.26%; N 3.51.