Supporting Information
for DOI: 10.1055/s-0031-1290164
© Georg Thieme Verlag KG Stuttgart · New York 2012
Supporting Information

Microwave-Promoted Michael Addition of Azaheterocycles to α,β-Unsaturated Esters and Acid under Solvent-Free Conditions

Lilian Dubois, Francine C. Acher, and Isabelle McCort-Tranchepain*

Université Paris Descartes, Sorbonne Paris Cité, UMR 8601 CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France

Table of Contents

General Methods S2
General Procedures S2
Procedures and Characterization of Products S3
References S10
General methods

All reactions were carried out under argon atmosphere, and were monitored by thinlayer chromatography with Merck 60F-254 precoated silica (0.2 mm) on glass. Flash chromatography was performed with Merck Kieselgel 60 (200–500 μm); the solvent systems were given v/v. 1HNMR (250 MHz) and 13C NMR (63 MHz) spectra were recorded on a Bruker ARX-250 spectrometer and 1HNMR (500 MHz) and 13C NMR (125 MHz) spectra were recorded on a Bruker AVANCEII-500 spectrometer. Chemical shifts (δ) are reported in ppm. 13C chemical attributions were assigned using 1H-decoupled spectra. The regioselectivity of the alkylated compounds 5a-c has been confirmed by 2D NMR experiments using heteronuclear correlations (HMBC). IR spectra were obtained with a Perkin-Elmer Spectrum One FT-IR spectrometer equipped with a MIRacleTM single reflection horizontal ATR unit (zirconium-selenium crystal). Mass spectra were recorded on a Thermo Finnigan LCD Advantage spectrometer. HRMS were carried out by the mass spectrometry services at Gif-sur-Yvette CNRS. Spectroscopic (1H and 13C NMR, MS) and/or analytical data were obtained using chromatographically homogeneous samples. Microwave reactions were performed using a Microwave/Milestone START and standard Pyrex vessels in open mode, maintaining the temperature max 100 °C by power modulation.

General Procedure A: Michael addition of azaheterocycles

Synthesis of the propionate derivatives (5a-c, 7a-c, 8b-c, 9b-c). Compounds 1-3 (1 equiv), DABCO (1-5 equiv) and TBAB (0.2-1 equiv) were grounded until the obtention of a homogeneous mass before adding α,β-unsaturated esters (4a-c) (1.5 equiv). The reaction mixture was stirred using a dark magnetic bar for 30 min. When K$_2$CO$_3$ (4 equiv) and/or KOH (0.4-4 equiv) was added, the mixture was stirred for further 2 min just before irradiation in a microwave oven. Power, time and purification are given in each case.

General Procedure B: Amino cyclization of adenine

Synthesis of 1,N6-etheno-adenine derivatives 6a-c. Compounds 5a-c (1 equiv) in 25 mM of aqueous solution of sodium acetate (1 N) was acidified to pH≈5 with a hydrochloric acid solution (1 N). The reaction mixture was heated at 45 °C for 10 min before adding chloroacetaldehyde (50% in water, 10-25 equiv) and stirring was maintained 48 h at this
room temperature. The solution was then evaporated under vacuum and the residue purified by column chromatography on silica gel (CH$_2$Cl$_2$/MeOH: 97/3 or 9/1).

General Procedure C: Deprotection of t-butyl ester

Preparation of derivatives 5c and 9-c. To t-butyl ester compound (1 mmol) in anhydrous CH$_2$Cl$_2$ (4 mL) was added TFA (1 mL) and stirring was maintained for 2 h at room temperature. Evaporation of the solvents to dryness and precipitation in Et$_2$O furnished the carboxylate compound.

Procedures and Characterization of Products

9-(2-Ethoxycarbonylethyl)adenine (5a):

Following the general procedure A, 1 (2.027 g, 15 mmol), DABCO (1.681 g, 15 mmol), TBAB (967 mg, 3 mmol) and 4a (2.45 mL, 22.5 mmol) were submitted to irradiation at 200 W for 8 min. The reaction mixture was then suspended in CHCl$_3$ (450 mL) and washed with water (3×250 mL). The organic layer was dried (MgSO$_4$), filtered and evaporated under reduced pressure to give 2.753 g (78%) of 5a as a white powder. Mp 161-163 °C [(lit. 164-166 °C)1, (lit.165-167 °C)2]; Rf=0.4 (CH$_2$Cl$_2$/MeOH: 9/1); 1H NMR (500 MHz, CDCl$_3$): $^\delta$ 8.33 (s, 1H, H-2), 7.91 (s, 1H, H-8), 6.03 (s, 2H, NH$_2$), 4.48 (t, J=6.2 Hz, 2H, CH$_2$N), 4.10 (q, J=7.0 Hz, 2H, CH$_2$CH$_3$), 2.90 (t, J=6.2 Hz, 2H, CH$_2$CO), 0.84 (t, J=7.0 Hz, 3H, CH$_3$); 13C NMR (500 MHz, DMSO): $^\delta$ 170.5 (CO), 155.9 (C-6), 152.4 (C-2), 149.4 (C-4), 140.9 (C-8), 118.7 (C-5), 60.2 (CH$_2$CH$_3$), 39.0 (CH$_2$N), 34.9 (CH$_2$CO), 13.8 (CH$_3$); IR (v, cm$^{-1}$) 3290 (NH$_2$), 1718 (CO); MS (ESI$^+$), m/z (%): [M+H]$^+$=236.1.
9-(2-tert-Butoxycarbonylethyl)adenine (5b):

\[
\begin{align*}
\text{Following the general procedure A, 1 (2.027 g, 15 mmol), DABCO (1.681 g, 15 mmol),} \\
\text{TBAB (967 mg, 3 mmol) and 4b (3.27 mL, 22.5 mmol), were submitted to irradiation at} \\
\text{200 W for 8 min. The reaction mixture was then suspended in CHCl\textsubscript{3} (450 mL) and} \\
\text{washed with water (3×250 mL). The organic layer was dried (MgSO\textsubscript{4}), filtered and} \\
\text{evaporated under reduced pressure to give 2.810 g (71%) of 5b as a white powder. Mp} \\
\text{182-184 °C (lit. 183-185 °C3); Rf=0.6 (CH\textsubscript{2}Cl\textsubscript{2}/MeOH: 9/1); 1H NMR (500 MHz, CDCl\textsubscript{3})::} \\
\text{δ 8.14 (s, 1H, H-2), 8.09 (s, 1H, H-8), 7.16 (s, 2H, NH\textsubscript{2}), 4.34 (t, J=7.0 Hz, 2H, CH\textsubscript{2}N),} \\
\text{2.85 (t, J=7.0 Hz, 2H, CH\textsubscript{2}CO), 1.31 (s, 9H, CH\textsubscript{3}); 13C NMR (500 MHz, DMSO): δ 169.7} \\
\text{(CO), 155.9 (C-6), 152.3 (C-2), 149.4 (C-4), 140.9 (C-8), 118.7 (C-5), 80.4 (Cq-tBu), 39.0} \\
\text{(CH\textsubscript{2}N), 34.9 (CH\textsubscript{2}CO), 27.8 (CH\textsubscript{3}); IR (ν, cm-1) 3292 (NH\textsubscript{2}), 1723 (CO); MS (ESI+), m/z} \\
\text{(%) [M+H+]=264.0 (100%); HRMS (ESI+) calcd for [C\textsubscript{12}H\textsubscript{17}N\textsubscript{5}O\textsubscript{2} + H+]: 264.1457; found:} \\
\text{264.1451.}
\end{align*}
\]

9-(2-Carboxyethyl)adenine (5c)

\[
\begin{align*}
\text{Following the general procedure A, 1 (2.027 g, 15 mmol), DABCO (1.681 g, 15 mmol),} \\
\text{TBAB (967 mg, 3 mmol) and 4c (1.54 mL, 22.5 mmol), were submitted to irradiation at} \\
\text{200 W for 8 min. The reaction mixture was then suspended in water (50 mL) and} \\
\text{filtered to remove the precipitate. The filtrate was then acidified to pH 3 with HCl (1 N) and} \\
\text{the precipitate was recovered by filtration and dried under reduced pressure for 48 h to give} \\
\text{2.17 g (72%) of 5c as a white powder. Mp 284-286 °C [(lit. 279-280 °C4; (lit. 284-288} \\
\text{°C),2 (lit. 285-288 °C5); Rf=0.1 (CH\textsubscript{2}Cl\textsubscript{2}/MeOH: 9/1); 1H NMR (500 MHz, DMSO): δ}
\end{align*}
\]
12.4 (s, 1H, CO₂H), 8.13 (s, 1H, H-2), 8.08 (s, 1H, H-8), 7.20 (s, 2H, NH₂), 4.33 (t, J=7.0 Hz, 2H, CH₂N), 2.87 (t, J=7.0 Hz, 2H, CH₂CO); ¹³C NMR (500 MHz, DMSO): δ 172.1 (CO), 155.8 (C-6), 152.2 (C-2), 149.4 (C-4), 142.9 (C-8), 120.6 (C-5), 40.1 (CH₂N), 35.5 (CH₂CO); IR (ν, cm⁻¹) 3170 (NH₂), 3065 (OH), 1706 (CO); MS (ESI⁺), m/z (%): [M+H]⁺=208.1 (100%); HRMS (ESI⁺) calcd for [C₈H₉N₅O₂ + H]⁺: 208.0833; found: 208.0825.

1-(2-Ethoxycarbonylethyl)indole (7a):

Following the general procedure A, 2 (1.771 g, 15 mmol), DABCO (2.020 g, 18 mmol), TBAB (967 mg, 3 mmol), 4a (2.45 mL, 22.5 mmol) and KOH (337 mg, 6 mmol), were submitted to irradiation at 200 W for 1.5 min. The reaction mixture was then suspended in CH₂Cl₂ (200 mL), washed with a solution of saturated NH₄Cl (200 mL) and brine (2×200 mL). The organic layer was dried (MgSO₄) and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel (cyclohexane/EtOAc: 99/1) to give 1.815 g (56%) of 7a as brown oil. Rf=0.3 (cyclohexane/EtOAc: 9/1); ¹H NMR (500 MHz, CDCl₃): δ 7.67 (d, J=7.9 Hz, 1H, H-7), 7.38 (d, J=8.2 Hz, 1H, H-4), 7.28 (t, J=7.9 Hz, 1H, H-6), 7.22 (t, J=8.2 Hz, H-5), 7.16 (d, J=3.3 Hz, 1H, H-2), 6.42 (d, J=3.3 Hz, 1H, H-3), 4.48 (t, J=6.8 Hz, 2H, CH₂N), 4.14 (q, J=7.3 Hz, 2H, CH₂CH₃), 2.84 (t, J=6.8 Hz, 2H, CH₂CO), 1.09 (t, J=7.3 Hz, 3H, CH₃); ¹³C NMR (500 MHz, CDCl₃): δ 171.2 (CO), 135.8, 128.8 (Cq-Ar), 127.9 (C-4), 121.7 (C-5), 121.0 (C-7), 119.5 (C-6), 109.1 (C-2), 101.6 (C-3), 60.0 (CH₂CH₃), 41.8 (CH₂N), 35.0 (CH₂CO), 14.0 (CH₃); IR (ν, cm⁻¹) 1731 (CO); MS (ESI⁺), m/z (%): [M+H]⁺=218.1 (100%); HRMS (ESI⁺) calcd for [C₁₃H₁₅NO₂ + H]⁺: 218.1177; found: 218.1182.

1-(2-tert-Butoxycarbonylethyl)indole (7b).

Following the general procedure A, 2 (1.771 g, 15 mmol), DABCO (2.020 g, 18 mmol), TBAB (967 mg, 3 mmol), 4a (2.45 mL, 22.5 mmol) and KOH (337 mg, 6 mmol), were submitted to irradiation at 200 W for 1.5 min. The reaction mixture was then suspended in CH₂Cl₂ (200 mL), washed with a solution of saturated NH₄Cl (200 mL) and brine (2×200 mL). The organic layer was dried (MgSO₄) and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel (cyclohexane/EtOAc: 99/1) to give 1.815 g (56%) of 7a as brown oil. Rf=0.3 (cyclohexane/EtOAc: 9/1); ¹H NMR (500 MHz, CDCl₃): δ 7.67 (d, J=7.9 Hz, 1H, H-7), 7.38 (d, J=8.2 Hz, 1H, H-4), 7.28 (t, J=7.9 Hz, 1H, H-6), 7.22 (t, J=8.2 Hz, H-5), 7.16 (d, J=3.3 Hz, 1H, H-2), 6.42 (d, J=3.3 Hz, 1H, H-3), 4.48 (t, J=6.8 Hz, 2H, CH₂N), 4.14 (q, J=7.3 Hz, 2H, CH₂CH₃), 2.84 (t, J=6.8 Hz, 2H, CH₂CO), 1.09 (t, J=7.3 Hz, 3H, CH₃); ¹³C NMR (500 MHz, CDCl₃): δ 171.2 (CO), 135.8, 128.8 (Cq-Ar), 127.9 (C-4), 121.7 (C-5), 121.0 (C-7), 119.5 (C-6), 109.1 (C-2), 101.6 (C-3), 60.0 (CH₂CH₃), 41.8 (CH₂N), 35.0 (CH₂CO), 14.0 (CH₃); IR (ν, cm⁻¹) 1731 (CO); MS (ESI⁺), m/z (%): [M+H]⁺=218.1 (100%); HRMS (ESI⁺) calcd for [C₁₃H₁₅NO₂ + H]⁺: 218.1177; found: 218.1182.
Following the general procedure A, 2 (1.771 g, 15 mmol), DABCO (2.020 g, 18 mmol), TBAB (967 mg, 3 mmol), 4b (3.27 mL, 22.5 mmol) and KOH (337 mg, 6 mmol), were submitted to irradiation at 200 W for 1 min. The reaction mixture was then suspended in CH₂Cl₂ (200 mL), washed with water (3×200 mL). The organic layer was dried (MgSO₄) and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel (cyclohexane/EtOAc: 99/1) to give 3.060 g (83%) of 7b as brown oil. R_f=0.5 (cyclohexane/EtOAc: 9/1); ¹H NMR (500 MHz, DMSO): δ 7.56 (d, J=8.0 Hz, 1H, H-7), 7.50 (d, J=8.2 Hz, 1H, H-4), 7.35 (d, J=3.2 Hz 1H, H-2), 7.14 (t, J=8.0 Hz, 1H, H-6), 7.02 (t, J=8.2 Hz, H-5), 6.42 (d, J=3.2 Hz, 1H, H-3), 4.40 (t, J=6.7 Hz, 2H, CH₂N), 2.74 (t, J=6.7 Hz, 2H, CH₂CO), 1.32 (s, 9H, CH₃); ¹³C NMR (500 MHz, CDCl₃): δ 170.2 (CO), 135.7, 128.7 (Cq-Ar), 127.8 (C-4), 121.4 (C-5), 120.9 (C-7), 119.3 (C-6), 109.1 (C-2), 101.3 (C-3), 80.7 (Cq-tBu), 41.7 (CH₂N), 36.0 (CH₂CO), 27.8 (CH₃); IR (ν, cm⁻¹) 1726 (CO); MS (ESI⁺), m/z (%): [M+H⁺]+=246.1 (100%); HRMS (ESI⁺) calcd for [C₁₅H₁₉NO₂ + H⁺]: 246.1489; found: 246.1488.

3-(1H-Indol-3-yl)-4-[1-{2-carboxyethyl}indol-3-yl]-1-methyl-1H-pyrrole-2,5-dione (8c) and Bis-[1-(2-carboxyethyl)indol-3-yl]-1-methyl-1H-pyrrole-2,5-dione (9c).

Following the general procedure A, 3 (289 mg, 0.85 mmol), DABCO (477 mg, 4.25 mmol), TBAB (274 mg, 0.85 mmol) and 4c (175 µL, 2.55 mmol), were submitted to irradiation at 500 W for 20 min. The residue was purified by column chromatography on silica gel (eluent: CH₂Cl₂/MeOH/AcOH: 99/1 to 90/10/2) to give 95 mg (27%) of 8c as a red crystal and 123 mg (37%) of 9c as red foam.

8c: Mp 95-97 °C; R_f=0.46 (CH₂Cl₂/MeOH/AcOH: 9/1/0.5); ¹H RMN (500 MHz, DMSO): δ 10.27 (brs, 1H, CO₂H), 8.14 (d, J=2.5 Hz, 1H, H-Ar), 8.08 (s, 1H, H-Ar), 7.76 (t, J=8.5 Hz, 2H, H-Ar), 7.40 (t, J=7.5 Hz, 1H, H-Ar), 7.36 (t, J=7.5 Hz, 1H, H-Ar), 7.24 (t, J=8.5 Hz, 1H, H-Ar), 7.13 (d, J=8.5 Hz, 1H, H-Ar), 7.01 (m, 2H, H-Ar), 4.82 (t, J=6.5 Hz, 1H, H-Ar), 4.48 (t, J=7.0 Hz, 1H, H-Ar), 3.91 (t, J=7.0 Hz, 1H, H-Ar), 3.81 (t, J=7.0 Hz, 1H, H-Ar), 3.72 (t, J=7.0 Hz, 1H, H-Ar), 3.63 (t, J=7.0 Hz, 1H, H-Ar), 3.54 (t, J=7.0 Hz, 1H, H-Ar), 3.45 (t, J=7.0 Hz, 1H, H-Ar), 3.36 (t, J=7.0 Hz, 1H, H-Ar), 3.27 (t, J=7.0 Hz, 1H, H-Ar), 3.18 (t, J=7.0 Hz, 1H, H-Ar), 3.09 (t, J=7.0 Hz, 1H, H-Ar), 3.00 (t, J=7.0 Hz, 1H, H-Ar), 2.91 (t, J=7.0 Hz, 1H, H-Ar), 2.82 (t, J=7.0 Hz, 1H, H-Ar), 2.73 (t, J=7.0 Hz, 1H, H-Ar), 2.64 (t, J=7.0 Hz, 1H, H-Ar), 2.55 (t, J=7.0 Hz, 1H, H-Ar), 2.46 (t, J=7.0 Hz, 1H, H-Ar), 2.37 (t, J=7.0 Hz, 1H, H-Ar), 2.28 (t, J=7.0 Hz, 1H, H-Ar), 2.19 (t, J=7.0 Hz, 1H, H-Ar), 2.10 (t, J=7.0 Hz, 1H, H-Ar), 2.01 (t, J=7.0 Hz, 1H, H-Ar), 1.92 (t, J=7.0 Hz, 1H, H-Ar), 1.83 (t, J=7.0 Hz, 1H, H-Ar), 1.74 (t, J=7.0 Hz, 1H, H-Ar), 1.65 (t, J=7.0 Hz, 1H, H-Ar), 1.56 (t, J=7.0 Hz, 1H, H-Ar), 1.47 (t, J=7.0 Hz, 1H, H-Ar), 1.38 (t, J=7.0 Hz, 1H, H-Ar), 1.29 (t, J=7.0 Hz, 1H, H-Ar), 1.20 (t, J=7.0 Hz, 1H, H-Ar), 1.11 (t, J=7.0 Hz, 1H, H-Ar), 1.02 (t, J=7.0 Hz, 1H, H-Ar), 0.93 (t, J=7.0 Hz, 1H, H-Ar), 0.84 (t, J=7.0 Hz, 1H, H-Ar), 0.75 (t, J=7.0 Hz, 1H, H-Ar), 0.66 (t, J=7.0 Hz, 1H, H-Ar), 0.57 (t, J=7.0 Hz, 1H, H-Ar), 0.48 (t, J=7.0 Hz, 1H, H-Ar), 0.39 (t, J=7.0 Hz, 1H, H-Ar), 0.30 (t, J=7.0 Hz, 1H, H-Ar), 0.21 (t, J=7.0 Hz, 1H, H-Ar), 0.12 (t, J=7.0 Hz, 1H, H-Ar), 0.03 (t, J=7.0 Hz, 1H, H-Ar).
CH₂N), 3.44 (s, 3H, NCH₃), 3.15 (t, J=6.5 Hz, 2H, CH₂CO); ¹³C NMR (500 MHz, CDCl₃): δ 173.4 (CO₂H), 173.2, 173.1 (CO-Ar), 137.2, 136.9 (Cq-Ar), 132.8, 129.8 (CH-Ar), 129.0, 128.4, 127.7, 126.8 (Cq-Ar), 123.1, 123.0, 122.5, 122.3, 120.8, 120.7 (CH-Ar), 112.6, 111.0 (Cq-Ar), 107.5, 106.9 (CH-Ar), 43.2 (CH₂N), 35.5 (CHH₂CO), 24.5 (NCH₃); IR (ν, cm⁻¹) 2960 (OH), 1693 (CO); MS (ESI⁺), m/z (%): [M-H]⁺=412.0 (70%), [2M–H]⁺=824.9 (100%).

9c: Rf=0.18 (CH₂Cl₂/MeOH/AcOH: 9/1/0.5); ¹H RMN (500 MHz, CDCl₃): δ 11.01 (brs, CO₂H), 7.54 (s, 2H, H-Ar), 7.30 (m, 2H, H-Ar), 7.10 (m, 4H, H-Ar) 6.85 (m, 2H, H-Ar), 4.42 (m, 4H, CH₂N), 3.16 (s, 3H, NCH₃), 2.85 (m, 4H, CH₂CO); ¹³C NMR (500 MHz, CDCl₃): δ 172.8 (CO₂H), 170.9 (CO-Ar), 137.0 (Cq-Ar), 133.0 (CH-Ar), 128.0, 127.6 (Cq-Ar), 122.9, 122.8, 120.7 (CH-Ar), 110.8 (Cq-Ar), 107.2 (CH-Ar), 43.2 (CH₂N), 36.8 (CH₂CO), 24.5 (NCH₃); IR (ν, cm⁻¹) 3436 (OH), 1728, 1698 (CO); MS (ESI⁺), m/z (%): [M–H]⁺=483.9 (100%), [2M–H]⁺=968.7 (35%); HRMS (ESI⁺) calcd for [C₂₇H₂₃N₃O₆ – H]⁺: 484.1503; found: 484.1488.

Following the general procedure A, 3 (1.707 g, 5 mmol), DABCO (673 mg, 6 mmol), TBAB (322 mg, 1 mmol), 4b (725 µL, 5 mmol) and KOH (112 mg, 2 mmol), were submitted to irradiation at 200 W for 10 min. The residue was purified by column
chromatography on silica gel (elucent: CH₂Cl₂/EtOAc: 95/5) to give 160 mg (25%) of 9b and 84 mg (9%) of 8b as red foam. Rf=0.6 (cyclohexane/EtOAc: 1/1); ¹H RMN (500 MHz, CDCl₃): δ 7.70 (m, 2H, H-Ar), 7.29 (m, 2H, H-Ar), 7.05 (m, 2H, H-Ar), 6.92 (m, 1H, H-Ar), 6.71 (m, 2H, H-Ar), 4.40 (t, J=7.0 Hz, 2H, CH₂N), 3.15 (s, 3H, NCH₃), 2.73 (t, J=7.0 Hz, 2H, CH₂CO), 1.41 (s, 9H, CH₃-tBu). ¹³C NMR (500 MHz, CDCl₃): δ 172.7 (CO₂tBu), 172.6 (CO-Ar), 170.2 (CO-Ar), 136.1, 136.0 (Cq-Ar), 132.0, 131.8 (CH-Ar), 128.2, 127.9, 127.2, 126.6, (Cq-Ar), 122.8, 122.5, 122.4, 122.2, 120.5, 120.4 (CH-Ar), 111.3, 109.6 (Cq-Ar) 107.6, 106.5 (CH-Ar), 82.9 (Cq-tBu) 42.6 (CH₂N), 36.2 (CH₂CO), 28.3 (CH₃-tBu), 24.4 (NCH₃); IR (ν, cm⁻¹) 3383 (NH), 1723, 1697 (CO); MS (ESI⁺), m/z (%): [M+H]⁺=468.1 (100%).

Bis-[1-(2-tert-butoxycarbonyylethyl)indol-3-yl]-1-methyl-1H-pyrrole-2,5-dione (9b).

Following the general procedure A, 3 (1.707 g, 5 mmol), DABCO (1.346 g, 12 mmol), TBAB (322 mg, 1 mmol), 4b (1.74 mL, 12 mmol) and KOH (224 mg, 4 mmol), were submitted to irradiation at 200 W for 10 min. The residue was purified by column chromatography on silica gel (elucent: CH₂Cl₂/EtOAc: 95/5) to give 2.123 g (71%) of 9b as red crystal. Mp 71-72 °C; Rf=0.8 (cyclohexane/EtOAc: 1/1); ¹H RMN (500 MHz, CDCl₃): δ 7.68 (s, 2H, H-Ar), 7.28 (d, J=8.0 Hz, 2H, H-Ar), 7.08 (t, J=8.0 Hz, 2H, H-Ar), 6.88 (t, J=7.6 Hz, 2H, H-Ar), 6.70 (t, J=7.6 Hz, 2H, H-Ar), 4.40 (t, J=7.0 Hz, 4H, CH₂N), 3.15 (s, 3H, NCH₃), 2.74 (t, J=7.0 Hz, 4H, CH₂CO), 1.41 (s, 18H, CH₃-tBu). ¹³C NMR (500 MHz, CDCl₃): δ 175.1 (CO₂tBu), 170.2 (CO-Ar), 136.1 (Cq-Ar), 131.8 (CH-Ar), 127.2 (Cq-Ar), 126.6 (Cq-Ar), 122.5 (CH-Ar), 122.4 (CH-Ar), 120.3 (CH-Ar), 115.2 (CH-Ar), 109.6 (CH-Ar), 82.9 (Cq-tBu) 42.6 (CH₂N), 36.2 (CH₂CO), 28.3 (CH₃-tBu), 25.5 (NCH₃); IR (ν, cm⁻¹) 1723, 1697 (CO); MS (ESI⁺), m/z (%): [M+H]⁺=597.9 (100%); HRMS (ESI⁺) calcd for [C₃₅H₃₉N₃O₆+H]⁺: 598.2907; found: 598.2905.
3-(2-Ethoxycarbonylethyl)-3H-imidazo[2,1-i]purine (6a)

\[
\text{CO}_2\text{CH}_2\text{CH}_3
\]

From 5a (110 mg, 0.465 mmol), chloroacetaldehyde (2 ml, 12 mmol) 90 mg (75%) of 6a was obtained as a white powder. Rf=0.55 (CH$_2$Cl$_2$/MeOH: 95/5); 1H NMR (500 MHz, CDCl$_3$): δ 8.83 (s, 1H, H-5), 8.04 (s, 1H, H-2), 7.69 (d, J=1.5 Hz, 1H, H-7), 7.54 (d, J=1.5 Hz, 1H, H-8), 4.56 (t, J=6.0 Hz, 2H, CH$_2$N), 4.08 (q, J=7.0 Hz, 2H, CH$_2$CH$_3$), 2.92 (t, J=6.0 Hz, 2H, CH$_2$CO), 1.17 (t, J=7.0 Hz, 3H, CH$_3$); 13C NMR (500 MHz, CDCl$_3$): δ 170.7 (CO), 141.7 (C-2), 138.2 (Cq-Ar), 135.7 (C-5), 133.0 (C-8), 115.3 (Cq-Ar), 111.3 (C-7), 61.4 (CH$_2$CH$_3$), 40.4 (CH$_2$N), 34.6 (CH$_2$CO), 14.2 (CH$_3$).

3-(2-tert-Butoxycarbonylethyl)-3H-imidazo[2,1-i]purine (6b):

\[
\text{CO}_2\text{C(CH}_3)_3
\]

From 5b (1.316 g, 5 mmol), chloroacetaldehyde (7.85 ml, 50 mmol) 980 mg (68%) of 6b was obtained as a white powder. Mp 169 °C; Rf=0.3 (CH$_2$Cl$_2$/MeOH: 95/5); 1H NMR (500 MHz, CDCl$_3$): δ 8.82 (s, 1H, H-5), 8.02 (s, 1H, H-2), 7.68 (d, J=1.5 Hz, 1H, H-7), 7.57 (d, J=1.5 Hz, 1H, H-8), 4.52 (t, J=6.5 Hz, 2H, CH$_2$N), 2.82 (t, J=6.5 Hz, 2H, CH$_2$CO), 1.34 (s, 9H,CH$_3$); 13C NMR (500 MHz, DMSO): δ 169.6 (CO), 141.2 (C-2), 140.6 (Cq-Ar), 136.6 (C-5), 132.5 (C-8), 122.6 (Cq-Ar), 111.9 (C-7), 80.4 (Cq-tBu), 40.2 (CH$_2$N), 35.0 (CH$_2$CO), 27.5 (CH$_3$); IR (v, cm$^{-1}$) 1726 (CO); MS (ESI$^+$), m/z (%): [M+H]$^+$=288.0 (100%); HRMS (ESI$^+$) calcd for [C$_{14}$H$_{17}$N$_5$O$_2$ + H]$^+$: 288.1457; found: 288.1456.
3-(2-Carboxyethyl)-3H-imidazo[2,1-i]purine (6c):

![Chemical Structure](image)

From 5c (125 mg, 0.6 mmol), chloroacetaldehyde (2.4 ml, 30 mmol) 72 mg (52%) of 6c was obtained as a white powder. Mp 238 °C; Rf=0.1 (CH₂Cl₂/MeOH: 85/15) ¹H NMR (500 MHz, DMSO): δ 9.67 (s, 1H, H-5), 8.66 (s, 1H, H-2), 8.48 (s, 1H, H-7), 8.06 (s, 1H, H-8), 4.59 (t, J=6.5 Hz, 2H, CH₂N), 2.98 (t, J=6.5 Hz, 2H, CH₂CO). ¹³C NMR (500 MHz, DMSO): δ 171.7 (CO), 144.7 (C-2), 142.5 (Cq-Ar), 137.4 (C-5), 123.5 (C-8), 118.9 (Cq-Ar), 114.1 (C-7), 40.5 (CH₂N), 33.7 (CH₂CO); IR (ν, cm⁻¹) 3015 (OH), 1728 (CO); MS (ESI⁺), m/z (%): [M+H]+=232.1 (100%); HRMS (ESI⁺) calcd for [C₁₀H₉N₅O₂ + H]⁺: 232.0833; found: 232.0826.

Compound 6c was also obtained by acidic hydrolysis of 5b according to the procedure described by Karskela.⁶ To 6b (143.66 mg, 0.5 mmol) in anhydrous CH₂Cl₂ (3.75 mL) was added TFA (7.50 mL) and stirring was maintained for 3 h at room temperature. After evaporation of the solvents to dryness, the residue was suspended in water, solubilized in a saturated NaHCO₃ solution, precipitated by acidification to pH 2 with HCl (2 N) and left a night at 4 °C. The product was filtered and dried in vacuo to give 6c in 80% yield (93 mg).

References