Supporting Information

Base Promoted Michael Reaction Concomitant with Alkylation of Cyclic-1,3-diones: An Efficient Approach to Access 2-Substituted Vinylogous Esters

Subhadip De, Lakshmana K. Kinthada, and Alakesh Bisai*

Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, ITI (Gas Rahat) Building, Govindpura, India-460 023.

Email: alakesh@iiserb.ac.in

Table of Contents

Materials and Methods S2
Figure 1 and Table 1 S3
General experimental procedures S-4
Figures 2 and 3 S4-S5
Spectral analysis of 5a-t S5-S12
Scanned copies of 1H NMR and 13C NMR Spectra and Mass S13-S71
Materials and Methods

Unless otherwise stated, reactions were performed in oven-dried glassware fitted with rubber septa under a nitrogen atmosphere and were stirred with Teflon-coated magnetic stirring bars. Liquid reagents and solvents were transferred via syringe using standard Schlenk techniques. Tetrahydrofuran (THF) was distilled over sodium/benzophenone ketyl. Acetonitrile was distilled over potassium carbonate. All other solvents such as DMSO, DMF, and reagents such as alkyl halides, cyclohexane 1,3-dione, cyclopenatne 1,3-dione, KO'Bu, Cs$_2$CO$_3$, K$_2$CO$_3$ were used as received, unless otherwise noted.

Thin layer chromatography was performed using Merck Silicagel 60 F-254 precoated plates (0.25 mm) and visualized by UV irradiation, anisaldehyde stain and other stains. Silicagel from Merck (particle size 100-200 mesh) was used for flash chromatography. Melting points were recorded on a digital melting point apparatus from Jyoti Scientific (AN ISO 9001:2000) and are uncorrected. 1H and 13C NMR spectra were recorded on Bruker 400, 500 MHz spectrometers with 13C operating frequencies of 100, 125 MHz, respectively. Chemical shifts (δ) are reported in ppm relative to the residual solvent signal (δ = 7.26 for 1H NMR and δ = 77.0 for 13C NMR). Data for 1H NMR spectra are reported as follows: chemical shift (multiplicity, coupling constants, number of hydrogens). Abbreviations are as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad). IR spectra were recorded on a FT-IR system (Spectrum BX) from PerkinElmer spectrometer and are reported in frequency of absorption (cm$^{-1}$). High resolution mass spectral data were obtained from the Central Instrumentation Facility (CIF) at the Indian Institute of Science Education and Research (IISER) Bhopal.
Figure 1. Important 2-alkyl-2-cyclohexenones intermediates.

Table 1: Optimization of 2-substituted vinylogous ester synthesis.

<table>
<thead>
<tr>
<th>entry</th>
<th>basea</th>
<th>solvent</th>
<th>temp</th>
<th>timeb</th>
<th>yieldcd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>NaH</td>
<td>THF</td>
<td>25 ºC</td>
<td>12h/4h</td>
<td>traces</td>
</tr>
<tr>
<td>2.</td>
<td>NaH</td>
<td>DMF</td>
<td>25 ºC</td>
<td>12h/4h</td>
<td>52%</td>
</tr>
<tr>
<td>3.</td>
<td>NaH</td>
<td>THF</td>
<td>60 ºC</td>
<td>4h/1h</td>
<td>09%</td>
</tr>
<tr>
<td>4.</td>
<td>NaH</td>
<td>DMF</td>
<td>80 ºC</td>
<td>4h/1h</td>
<td>90%</td>
</tr>
<tr>
<td>5.</td>
<td>NaH</td>
<td>MeCN</td>
<td>50 ºC</td>
<td>3h/1.5h</td>
<td>79%</td>
</tr>
<tr>
<td>6.</td>
<td>NaH</td>
<td>DMSO</td>
<td>80 ºC</td>
<td>3h/1h</td>
<td>93%</td>
</tr>
<tr>
<td>7.</td>
<td>K₂CO₃</td>
<td>THF</td>
<td>60 ºC</td>
<td>5h/5h</td>
<td>75%</td>
</tr>
<tr>
<td>8.</td>
<td>K₂CO₃</td>
<td>DMF</td>
<td>80 ºC</td>
<td>4h/1h</td>
<td>82%</td>
</tr>
<tr>
<td>9.</td>
<td>K₂CO₃</td>
<td>MeCN</td>
<td>50 ºC</td>
<td>6h/3h</td>
<td>57%</td>
</tr>
<tr>
<td>10.</td>
<td>K₂CO₃</td>
<td>DMSO</td>
<td>80 ºC</td>
<td>3h/1h</td>
<td>84%</td>
</tr>
<tr>
<td>11.</td>
<td>Na₂CO₃</td>
<td>DMF</td>
<td>80 ºC</td>
<td>4h/1h</td>
<td>40%</td>
</tr>
<tr>
<td>12.</td>
<td>Na₂CO₃</td>
<td>DMSO</td>
<td>80 ºC</td>
<td>4h/1h</td>
<td>63%</td>
</tr>
<tr>
<td>13.</td>
<td>Cs₂CO₃</td>
<td>THF</td>
<td>60 ºC</td>
<td>4h/1h</td>
<td>decomp.</td>
</tr>
<tr>
<td>14.</td>
<td>Cs₂CO₃</td>
<td>MeCN</td>
<td>50 ºC</td>
<td>4h/1h</td>
<td>74%</td>
</tr>
<tr>
<td>15.</td>
<td>Cs₂CO₃</td>
<td>DMF</td>
<td>80 ºC</td>
<td>3h/1h</td>
<td>83%</td>
</tr>
<tr>
<td>16.</td>
<td>Cs₂CO₃</td>
<td>DMSO</td>
<td>80 ºC</td>
<td>3h/1h</td>
<td>92%</td>
</tr>
<tr>
<td>17.</td>
<td>KOʻBu</td>
<td>THF</td>
<td>60 ºC</td>
<td>4h/1h</td>
<td>decomp.</td>
</tr>
<tr>
<td>18.</td>
<td>KOʻBu</td>
<td>MeCN</td>
<td>50 ºC</td>
<td>4h/2h</td>
<td>30%</td>
</tr>
<tr>
<td>19.</td>
<td>KOʻBu</td>
<td>DMSO</td>
<td>80 ºC</td>
<td>4h/1h</td>
<td>decomp.</td>
</tr>
<tr>
<td>20.</td>
<td>KOʻBu</td>
<td>DMF</td>
<td>80 ºC</td>
<td>4h/1h</td>
<td>21%</td>
</tr>
</tbody>
</table>

*a1.5 equiv. of base was used under inert atmosphere. bTime refers are for first Michael step followed by alkylation. cReactions were carried out on a 0.5 mmol of 6a with 0.75 mmol of ethyl acrylate in 2 mL of solvent. dIsolated yields. eDecomposition of remaining materials.
General experimental procedure for 2-Substituted Vinylogous Esters:

A flame-dried round-bottom flask was charged with cyclic 1,3-dione [1.0 mmol (1.0 equiv.)] in anhydrous DMSO (4 mL) and the round bottom flask was placed at 0 ºC. To this reaction mixture was added NaH [1.2 mmol (1.2 equiv.)] (condition A) or Cs₂CO₃ [1.2 mmol (1.2 equiv.)] (condition B) and stirring was continued for 5 mins. Ethylacrylate [1.2 mmol (1.2 equiv.)] was added to the reaction mixture and it was placed on a oil-bath pre-heated at 80 ºC and stirred for indicated time (see, Figure 2). Upon completion of the Michael reaction (TLC showed complete consumption of starting cyclic 1,3-dione), it was brought to room temperature and alkyl halide [1.2 mmol (1.2 equiv.)] was added to the reaction mixture, followed by heating continued for indicated time (for O-alkylations). Upon completion of the alkylation (judged by running TLC), water (10 mL) was added to the reaction mixture and it was extracted with ethylacetate (10 mL X 2). The organic layer was separated and dried with anhydrous MgSO₄ and finally evaporated under reduced pressure. The crude vinylogous ester was purified by a silica-gel column chromatography (ethyl acetate and petroleum ether as eluents).
Figure 2: Substrates scopes for vinylogous esters synthesis.

Ethyl 3-(2-((2-bromoallyl)oxy)-6-oxocyclohex-1-en-1-yl)propanoate (5a): R_f = 0.54 (50% EtOAc in hexane), ^1H NMR (400 MHz, CDCl_3) δ 5.95 (m, 1H), 5.69 (m, 1H), 4.63 (t, J = 1.44 Hz, 2H), 4.10 (q, J = 7.12 Hz, 2H), 2.65 (m, 2H), 2.55 (t, J = 6.2 Hz, 2H), 2.34-2.38 (m, 4H), 1.99 (m, 2H), 1.24 (t, J = 7.16 Hz, 3H); ^13C NMR (100 MHz, CDCl_3) δ 197.9, 173.4, 170.2, 126.5, 119.0, 117.9, 70.4, 60.1, 36.3, 33.0, 25.1, 20.9, 18.0, 14.2; IR (film) 2939, 1728, 1589, 1446, 1385, 1354, 1277, 1169, 1072, 1041, 856 cm^-1; HRMS (ESI) m/z 353.0342 [(M + Na)+; calculated for [C_{14}H_{19}BrO_4 + Na]^+: 353.0359].

Figure 3: Substrates scopes for vinylogous esters synthesis.

Ethyl 3-(2-(allyloxy)-6-oxocyclohex-1-en-1-yl)propanoate (5b): R_f = 0.59 (50% EtOAc in hexane), ^1H NMR (400 MHz, CDCl_3) δ 5.88-5.98 (m, 1H), 5.31-5.36 (m, 1H), 5.24-5.28 (m, 1H), 4.55 (m, 2H), 4.08 (q, J = 7.12 Hz, 2H), 2.59-2.64 (m, 2H), 2.55 (t, J = 6.24 Hz, 2H),
2.33 (m, 4H), 1.95 (m, 2H), 1.22 (t, J = 7.16 Hz, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 198.0, 173.6, 171.8, 132.8, 118.2, 117.5, 68.1, 60.1, 36.3, 33.1, 25.3, 20.9, 17.9, 14.2; IR (film) \(\nu_{\text{max}}\) 2931, 1724, 1597, 1438, 1385, 1265, 1184, 1076, 1030, 930, 860 cm\(^{-1}\); LRMS (ESI) m/z 313.1273 [(M+H)+; calculated for [C\(_{19}\)H\(_{21}\)O\(_4\) + Na]+: 313.1434].

Ethyl 3-(2-methoxy-6-oxocyclohex-1-en-1-yl)propanoate (5c): \(R_f = 0.54\) (75% EtOAc in hexane), \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 4.09 (q, J = 7.16 Hz, 2H), 3.81 (s, 3H), 2.57 (m, 4H), 2.29-2.35 (m, 4H), 1.95-2.01 (m, 2H), 1.21-1.26 (m, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 197.9, 173.7, 172.6, 117.8, 60.1, 55.2, 36.2, 33.1, 24.8, 20.7, 17.8, 14.2; IR (film) \(\nu_{\text{max}}\) 2927, 1728, 1608, 1446, 1373, 1246, 1165, 1088, 1049, 864 cm\(^{-1}\); HRMS (ESI) m/z 249.1098 [(M + Na)+; calculated for [C\(_{12}\)H\(_{18}\)O\(_4\) + Na]+: 249.1097].

Ethyl 3-(2-(benzyloxy)-6-oxocyclohex-1-en-1-yl)propanoate (5d): \(R_f = 0.68\) (50% EtOAc in hexane), \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.33-4.41 (m, 5H), 5.13 (s, 2H), 4.08 (q, J = 7.15 Hz, 2H), 2.68 (t, J = 7.6 Hz, 2H), 2.59 (t, J = 6.2 Hz, 2H), 2.31-2.38 (m, 4H), 1.96 (m, 2H), 1.22 (t, J = 7.16 Hz, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 197.9, 173.6, 171.8, 136.4, 128.8, 128.3, 126.7, 118.6, 69.4, 60.1, 36.3, 33.2, 25.6, 20.9, 18.1, 14.2; IR (film) \(\nu_{\text{max}}\) 2966, 1732, 1647, 1616, 1454, 1377, 1315, 1180, 1080, 1034, 744 cm\(^{-1}\); HRMS (ESI) m/z 325.1421 [(M + Na)+; calculated for [C\(_{18}\)H\(_{22}\)O\(_4\) + Na]+: 325.1410].

Ethyl 3-(6-oxo-2-(prop-2-yn-1-yloxy)cyclohex-1-en-1-yl)propanoate (5e): \(R_f = 0.61\) (50% EtOAc in hexane), \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 4.68 (d, J = 2.4 Hz, 2H), 4.10 (q, J = 7.16 Hz, 2H), 3.81 (s, 3H), 2.57 (m, 4H), 2.29-2.35 (m, 4H), 1.95-2.01 (m, 2H), 1.21-1.26 (m, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 197.9, 173.7, 172.6, 117.8, 60.1, 55.2, 36.2, 33.1, 24.8, 20.7, 17.8, 14.2; IR (film) \(\nu_{\text{max}}\) 2927, 1728, 1608, 1446, 1373, 1246, 1165, 1088, 1049, 864 cm\(^{-1}\); HRMS (ESI) m/z 313.1273 [(M+H)+; calculated for [C\(_{19}\)H\(_{21}\)O\(_4\) + Na]+: 313.1434].
Hz, 2H), 2.67 (t, J = 6.2 Hz, 2H), 2.57-2.63 (m, 2H), 2.31-2.37 (m, 4H), 2.01 (m, 2H), 1.21-1.29 (m, 4H); \(^{13}\text{C NMR}\) (100 MHz, CDCl₃) \(\delta 198.0, 173.5, 170.5, 119.8, 77.9, 76.3, 60.1, 55.3, 36.4, 33.1, 25.0, 20.8, 17.9, 14.2; \text{IR (film) } \nu_{\text{max}} 3263, 2939, 1728, 1616, 1377, 1269, 1176, 1080, 1045, 929, 852 \ \text{cm}^{-1}; \ \text{HRMS (ESI) } m/z \ 273.1105 [(\text{M + Na})^+] ; \text{calculated for } [\text{C}_{14}\text{H}_{18}\text{O}_4 + \text{Na}]^+ : 273.1097].

![Ethyl 3-(2-(allyloxy)-5-oxocyclopent-1-en-1-yl)propanoate (5f): 52% yield, R_f = 0.54 (50% EtOAc in hexane), \(^1\text{H NMR}\) (400 MHz, CDCl₃) \(\delta 5.92-6.01 (m, 1H), 5.34-5.39 (m, 1H), 5.28-5.31 (m, 1H), 4.68 (m, 2H), 4.09 (q, J = 7.12 Hz, 2H), 2.66 (m, 2H), 2.41-2.45 (m, 6H), 1.22 (t, J = 7.16 Hz, 3H); \(^{13}\text{C NMR}\) (100 MHz, CDCl₃) \(\delta 204.5, 184.4, 173.2, 132.2, 119.0, 118.2, 69.7, 60.2, 33.5, 32.0, 24.7, 17.0, 14.2; \text{IR (film) } \nu_{\text{max}} 2924, 2855, 1732, 1620, 1450, 1389, 1269, 1165, 1096, 987, 934 \ \text{cm}^{-1}; \ \text{HRMS (ESI) } m/z \ 261.1099 [(\text{M + Na})^+] ; \text{calculated for } [\text{C}_{13}\text{H}_{18}\text{O}_4 + \text{Na}]^+ : 261.1097].

![Ethyl 3-(2-((2-bromoallyl)oxy)-5-oxocyclopent-1-en-1-yl)propanoate (5g): \ R_f = 0.51 (50% EtOAc in hexane), \(^1\text{H NMR}\) (500 MHz, CDCl₃) \(\delta 5.99 (m, 1H), 5.72 (m, 1H), 4.76 (t, J = 1.4 Hz, 2H), 4.11 (q, J = 7.15 Hz, 2H), 2.67 (m, 2H), 2.48 (m, 6H), 1.24 (t, J = 7.15 Hz, 3H); \(^{13}\text{C NMR}\) (125 MHz, CDCl₃) \(\delta 204.3, 182.9, 173.1, 125.9, 119.9, 118.4, 71.8, 60.3, 33.6, 31.9, 24.5, 17.0, 14.2; \text{IR (film) } \nu_{\text{max}} 2986, 2924, 1732, 1628, 1447, 1385, 1269, 1169, 1092, 1007, 910 \ \text{cm}^{-1}; \ \text{HRMS (ESI) } m/z \ 339.0204 [(\text{M + Na})^+] ; \text{calculated for } [\text{C}_{13}\text{H}_{17}\text{BrO}_4 + \text{Na}]^+ : 339.0202].
Ethyl 3-(2-methoxy-5-oxocyclopent-1-en-1-yl)propanoate (5h): \(R_f = 0.39 \) (50% EtOAc in hexane). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 4.11 (q, \(J = 7.16 \) Hz, 2H), 3.95 (s, 3H), 2.67 (m, 2H), 2.43-2.46 (m, 6H), 1.25 (t, \(J = 7.52 \) Hz, 3H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 204.4, 185.1, 173.2, 118.8, 60.2, 56.4, 33.4, 32.1, 24.5, 17.0, 14.2; IR (film) \(\nu_{\max} \) 2924, 1732, 1624, 1462, 1369, 1261, 1177, 1095, 999, 760 cm\(^{-1}\); HRMS (ESI) m/z 235.0951 [(M + Na)\(^+\); calculated for [C\(_{11}\)H\(_{16}\)O\(_4\) + Na\(^+\): 235.0941].

Ethyl 3-(2-(benzyloxy)-5-oxocyclopent-1-en-1-yl)propanoate (5i): \(R_f = 0.59 \) (75% EtOAc in hexane). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.35-7.43 (m, 5H), 5.23 (s, 2H), 4.08 (q, \(J = 7.16 \) Hz, 2H), 2.69 (m, 2H), 2.46-2.53 (m, 4H), 2.43 (m, 2H), 1.22 (t, \(J = 7.16 \) Hz, 3H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 204.5, 184.3, 173.2, 135.8, 128.9, 128.6, 127.0, 119.4, 70.9, 60.2, 33.6, 32.1, 25.1, 17.1, 14.2; IR (film) \(\nu_{\max} \) 2928, 1728, 1686, 1628, 1354, 1261, 1173, 1088, 995, 906 cm\(^{-1}\); HRMS (ESI) m/z 311.1240 [(M + Na)\(^+\); calculated for [C\(_{17}\)H\(_{20}\)O\(_4\) + Na\(^+\): 311.1254].

Ethyl 3-(5-oxo-2-(prop-2-yn-1-yloxy)cyclopent-1-en-1-yl)propanoate (5j): \(R_f = 0.50 \) (50% EtOAc in hexane). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 4.78 (d, \(J = 2.36 \) Hz, 2H), 4.09 (q, \(J = 7.08 \) Hz, 2H), 2.78 (t, \(J = 4.72 \) Hz, 2H), 2.63 (t, \(J = 2.4 \) Hz, 1H), 2.46 (m, 6H), 1.23 (t, \(J = 7.08 \) Hz, 3H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 204.4, 183.1, 173.1, 120.3, 77.4, 76.9, 60.2, 56.7, 33.6, 32.0, 24.5, 17.0, 14.2; IR (film) \(\nu_{\max} \) 3252, 2928, 1732, 1632, 1447, 1393, 1334, 1269, 1088, 995, 898 cm\(^{-1}\); LRMS (ESI) m/z 259.2902 [(M + Na)\(^+\); calculated for [C\(_{13}\)H\(_{16}\)O\(_4\) + Na\(^+\): 259.0941].
Ethyl 3-(2-(allyloxy)-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)propanoate (5k): \(R_f = 0.63 \) (50% EtOAc in hexane), \(^1\text{H NMR} (400 \text{ MHz, CDCl}_3) \delta 5.89-5.98 \) (m, 1H), 5.32-5.37 (m, 1H), 5.26-5.29 (m, 1H), 4.55 (m, 2H), 4.09 (q, \(J = 7.12 \text{ Hz} \)), 2.64 (t, \(J = 7.6 \text{ Hz} \)), 2.41 (s, 2H), 2.35 (m, 2H), 2.22 (s, 2H), 1.24 (t, \(J = 7.2 \text{ Hz} \)), 1.07 (s, 6H); \(^{13}\text{C NMR} (100 \text{ MHz, CDCl}_3) \delta 197.8, 173.6, 169.9, 132.9, 117.4, 117.1, 68.0, 60.1, 50.2, 39.1, 33.1, 32.1, 29.7, 28.4, 17.9, 14.2; \(\text{IR (film)} \nu_{\text{max}} 2931, 1728, 1616, 1373, 1296, 1169, 1072, 925 \text{ cm}^{-1} \); \(\text{HRMS (ESI)} m/z \) 281.1737 [(M+H)\(^+\); calculated for \([\text{C}_{16}\text{H}_{25}\text{O}_4]^+\): 281.1747].

Ethyl 3-(2-((2-bromoallyl)oxy)-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)propanoate (o): \(R_f = 0.58 \) (50% EtOAc in hexane), \(^1\text{H NMR} (400 \text{ MHz, CDCl}_3) \delta 5.92 \) (m, 1H), 5.66 (m, 1H), 4.59 (t, \(J = 1.49 \text{ Hz} \)), 4.06 (q, \(J = 7.12 \text{ Hz} \)), 2.63 (m, 2H), 2.37 (s, 2H), 2.34 (m, 2H), 2.20 (s, 2H), 1.21 (t, \(J = 7.16 \text{ Hz} \)), 1.05 (s, 6H); \(^{13}\text{C NMR} (100 \text{ MHz, CDCl}_3) \delta 197.7, 173.4, 168.5, 126.6, 117.8, 117.7, 70.3, 60.1, 50.1, 38.8, 33.0, 32.2, 29.6, 28.3, 17.9, 14.2; \(\text{IR (film)} \nu_{\text{max}} 2963, 1728, 1616, 1373, 1296, 1169, 1072, 925 \text{ cm}^{-1} \); \(\text{HRMS (ESI)} m/z \) 381.0677 [(M + Na)\(^+\); calculated for \([\text{C}_{16}\text{H}_{23}\text{BrO}_4 + \text{Na}]^+\): 381.0672].

Ethyl 3-(2-methoxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)propanoate (5m): \(R_f = 0.57 \) (50% EtOAc in hexane), \(^1\text{H NMR} (400 \text{ MHz, CDCl}_3) \delta 4.08 \) (q, \(J = 7.16 \text{ Hz} \)), 3.78 (s, 3H), 2.56 (m, 2H), 2.40 (s, 2H), 2.32 (m, 2H), 2.21 (s, 2H), 1.23 (m, 3H), 1.07 (s, 6H); \(^{13}\text{C NMR} (100 \text{ MHz, CDCl}_3) \delta 197.7, 173.6, 170.8, 116.5, 60.1, 55.1, 50.1, 38.7, 33.2, 32.0, 29.7, 28.4, 17.9, 14.2; \(\text{IR (film)} \nu_{\text{max}} 2963, 1728, 1616, 1373, 1296, 1169, 1072, 925 \text{ cm}^{-1} \); \(\text{HRMS (ESI)} m/z \) 381.0677 [(M + Na)\(^+\); calculated for \([\text{C}_{16}\text{H}_{23}\text{BrO}_4 + \text{Na}]^+\): 381.0672].
29.6, 28.5, 17.7, 14.2; IR (film) \(\nu_{\text{max}} \) 2963, 1732, 1616, 1458, 1373, 1238, 1184, 1088, 1030 cm\(^{-1}\); HRMS (ESI) m/z 255.1597 [(M+H\(^+\)]; calculated for [C\(_{14}H_{23}O_4\)]\(^+\): 255.1591.

Ethyl 3-(4,4-dimethyl-6-oxo-2-phenoxy-cyclohex-1-en-1-yl)propanoate (5n):
\(\text{R}_f = 0.70 \) (50% EtOAc in hexane), \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.33-7.42 (m, 5H), 51.2 (s, 2H), 4.08 (q, \(J = 7.16 \) Hz, 2H), 2.69 (m, 2H), 2.45 (s, 2H), 2.38 (t, \(J = 8.06 \) Hz, 2H), 2.22 (s, 2H), 1.27 (s, 3H), 1.23 (t, \(J = 7.16 \) Hz, 3H), 1.04 (s, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 198.8, 173.5, 169.9, 136.5, 128.8, 128.2, 126.7, 117.5, 69.4, 60.1, 50.2, 39.5, 33.2, 32.2, 29.7, 28.4, 18.0, 14.2; IR (film) \(\nu_{\text{max}} \) 2956, 2855, 1732, 1612, 1458, 1373, 1300, 1165, 1076, 1026, 856, 741, 698 cm\(^{-1}\); HRMS (ESI) m/z 353.1729 [(M + Na\(^+\)]; calculated for [C\(_{20}H_{26}O_4 + Na\)]\(^+\): 353.1723.

Ethyl 3-(4,4-dimethyl-6-oxo-2-(prop-2-yn-1-yloxy)cyclohex-1-en-1-yl)propanoate (m):
\(\text{R}_f = 0.64 \) (50% EtOAc in hexane), \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 4.67 (d, \(J = 2.36 \) Hz, 2H), 4.10 (m, 2H), 2.62 (m, 2H), 2.57 (t, \(J = 2.36 \) Hz, 1H), 2.52 (s, 2H), 2.35 (m, 2H), 2.24 (s, 2H), 1.25 (m, 3H), 1.1 (s, 6H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 197.9, 173.5, 168.7, 118.7, 78.1, 76.3, 60.1, 55.2, 50.3, 38.7, 33.2, 32.3, 29.7, 28.4, 17.8, 14.2; IR (film) \(\nu_{\text{max}} \) 3275, 2963, 1732, 1624, 1458, 1377, 1261, 1177, 1080, 1022, 802 cm\(^{-1}\); HRMS (ESI) m/z 301.1409 [(M + Na\(^+\)]; calculated for [C\(_{16}H_{22}O_4 + Na\)]\(^+\): 301.1410.
Ethyl 3-(2-(allyloxy)-4-methyl-6-oxocyclohex-1-en-1-yl)propanoate (5p): $R_f = 0.65$ (50\% EtOAc in hexane), $^1\text{H NMR}$ (400 MHz, CDCl$_3$) δ 5.90-5.99 (m, 1H), 5.33-5.38 (m, 1H), 5.26-5.30 (m, 1H), 4.52-4.63 (m, 2H), 4.10 (q, $J = 7.12$ Hz, 2H), 2.61-2.67 (m, 2H), 2.43 (m, 1H), 2.34 (m, 2H), 2.00-2.08 (m, 1H), 1.80 (br, s, 2H), 1.25 (m, 4H), 1.09 (d, $J = 6.2$ Hz, 3H); $^{13}\text{C NMR}$ (100 MHz, CDCl$_3$) δ 197.9, 173.6, 171.1, 132.8, 117.9, 117.5, 68.1, 60.1, 44.6, 33.5, 33.1, 28.6, 21.1, 17.9, 14.2; IR (film) ν_{max} 2982, 2932, 1732, 1609, 1454, 1381, 1180, 1076, 926, 860 cm$^{-1}$; HRMS (ESI) m/z 289.1413 [(M + Na)$^+$; calculated for [C$_{15}$H$_{22}$O$_4$ + Na]$^+$: 289.1410].

![Image](5p)

Ethyl 3-(2-((2-bromoallyl)oxy)-4-methyl-6-oxocyclohex-1-en-1-yl)propanoate (5q): $R_f = 0.60$ (50\% EtOAc in hexane), $^1\text{H NMR}$ (400 MHz, CDCl$_3$) δ: 5.95 (m, 1H), 5.72 (m, 1H), 4.63 (m, 2H), 4.09 (q, $J = 7.14$ Hz, 2H), 2.67 (m, 2H), 2.46 (m, 1H), 2.40 (m, 3H), 2.24 (m, 2H), 2.10 (m, 1H), 1.25 (t, $J = 7.15$ Hz, 3H), 1.09 (d, $J = 6.2$ Hz, 3H); $^{13}\text{C NMR}$ (100 MHz, CDCl$_3$) δ: 198.6, 175.0, 171.5, 129.2, 119.6, 118.2, 70.2, 60.8, 45.3, 33.8, 33.6, 30.0, 22.1, 18.1, 14.2; IR (film) ν_{max} 2970, 2862, 1728, 1728, 1616, 1450, 1377, 1172, 1080, 1010, 907 cm$^{-1}$; HRMS (ESI) m/z 367.0517 [(M + Na)$^+$; calculated for [C$_{15}$H$_{21}$BrO$_4$ + Na]$^+$: 367.0515].

![Image](5q)

Ethyl 3-(2-methoxy-4-methyl-6-oxocyclohex-1-en-1-yl)propanoate (5r): $R_f = 0.55$ (50\% EtOAc in hexane), $^1\text{H NMR}$ (400 MHz, CDCl$_3$) δ 4.10 (q, $J = 7.16$ Hz, 2H), 3.81 (s, 3H), 2.58 (m, 1H), 2.42 (m, 1H), 2.32 (m, 2H), 2.13-2.24 (m, 2H), 1.79 (br, s, 2H), 1.30 (m, 4H), 1.1 (d, $J = 6.04$ Hz, 3H); $^{13}\text{C NMR}$ (100 MHz, CDCl$_3$) δ 197.8, 173.6, 171.9, 117.3, 64.5, 55.2, 44.6, 33.2, 33.0, 28.4, 21.2, 17.8, 14.2; IR (film) ν_{max} 2925, 2872, 1728, 1616, 1377, 1238, 1165, 1088, 1026, 856 cm$^{-1}$; LRMS (ESI) m/z 263.1286 [(M + Na)$^+$; calculated for [C$_{13}$H$_{20}$O$_4$ + Na]$^+$: 263.1254].

![Image](5r)
Ethyl 3-(2-(benzyl oxy)-4-methyl-6-oxocyclohex-1-en-1-yl)propanoate (5s): \(R_f = 0.69 \) (50% EtOAc in hexane), \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.31-7.40 (m, 5H), 5.10 (m, 2H), 4.05 (q, \(J = 7.16 \) Hz, 2H), 2.65 (m, 2H), 2.38-2.43 (m, 1H), 2.33 (m, 2H), 2.02 (m, 1H), 1.82 (br, s, 2H), 1.18-1.24 (m, 4H), 1.04 (d, \(J = 6.2 \) Hz, 3H); \(^1\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 197.9, 173.5, 171.1, 136.4, 128.8, 128.3, 126.7, 118.2, 69.4, 60.1, 44.6, 33.7, 33.2, 28.5, 21.1, 18.1, 14.2; IR (film) \(\nu_{\text{max}} \) 2966, 1732, 1647, 1616, 1454, 1377, 1315, 1180, 1080, 1034, 745 cm\(^{-1}\); HRMS (ESI) m/z 339.1568 [(M + Na)\(^+\); calculated for [C\(_{19}\)H\(_{24}\)O\(_4\) + Na]\(^+\): 339.1567].

Ethyl 3-(4-methyl-6-oxo-2-(prop-2-yn-1-yl)oxy)cyclohex-1-en-1-yl)propanoate (r): \(R_f = 0.62 \) (50% EtOAc in hexane), \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 4.68 (d, \(J = 2.4 \) Hz, 2H), 4.10 (q, \(J = 7.16 \) Hz, 2H), 2.74 (dd, \(J = 16.36, 3.8 \) Hz, 1H), 2.58 (m, 1H), 2.35 (s, 1H), 2.32 (m, 2H), 2.02-2.09 (m, 2H), 1.84 (br, s, 2H), 1.23-1.29 (m, 4H), 1.11 (d, \(J = 6.32 \) Hz, 3H); \(^1\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 198.0, 173.5, 169.9, 119.4, 78.0, 76.3, 60.1, 55.3, 44.7, 33.1, 33.09, 28.5, 21.1, 17.9, 14.2; IR (film) \(\nu_{\text{max}} \) 3279, 2967, 1728, 1624, 1450, 1377, 1184, 1080, 1030, 860 cm\(^{-1}\); HRMS (ESI) m/z 287.1258 [(M + Na)\(^+\); calculated for [C\(_{15}\)H\(_{20}\)O\(_4\) + Na]\(^+\): 287.1254].
Spectral data

1H NMR (400 MHz, CDCl$_3$) of compound (5a)
13C NMR (100 MHz, CDCl$_3$) of compound (5a)
\(^1\)H NMR (400 MHz, CDCl\textsubscript{3}) of compound (5b)
13C NMR (100 MHz, CDCl$_3$) of compound (5b)
1H NMR (400 MHz, CDCl$_3$) of compound (5c)
\(^{13}\)C NMR (100 MHz, CDCl\(_3\)) of compound (5c)
1H NMR (400 MHz, CDCl$_3$) of compound (5d)
13C NMR (100 MHz, CDCl$_3$) of compound (5d)
1H NMR (400 MHz, CDCl$_3$) of compound (5e)
13C NMR (100 MHz, CDCl$_3$) of compound (5e)
1H NMR (400 MHz, CDCl$_3$) of compound (5f)
13C NMR (100 MHz, CDCl$_3$) of compound (5f)
1H NMR (500 MHz, CDCl$_3$) of compound (5g)
\[1^3\text{C NMR (125 MHz, CDCl}_3\text{) of compound (5g)} \]
1H NMR (400 MHz, CDCl$_3$) of compound (5h)
13C NMR (100 MHz, CDCl$_3$) of compound (5h)
Display Report

Acquisition Parameter
Source Type: ESI
Focus: Active
Scan Begin: 50 m/z
Scan End: 3000 m/z
Ion Polarity: Positive
Set Collar:
Set Capillary: 4500 V
Set End Plate Offset: -500 V
Set Collision Cell RF: 130.0 Vpp
Set Nebulizer: 0.4 Bar
Set Dry Heater: 180 °C
Set Dry Gas: 4.0 l/min
Set Divert Valve: Waste

--- TIC + All MS ---

--- MS, 0.2-1 min #12-1 ---

--- MS, 0.2-0.3 min #12-1 ---

Bruker Compass DataAnalysis 4.0

Page 1 of 1
1H NMR (400 MHz, CDCl$_3$) of compound (5i)
13C NMR (100 MHz, CDCl$_3$) of compound (5i)
1H NMR (400 MHz, CDCl$_3$) of compound (5j)
13C NMR (100 MHz, CDCl$_3$) of compound (5j)
1H NMR (400 MHz, CDCl$_3$) of compound (5k)
13C NMR (100 MHz, CDCl$_3$) of compound (5k)
Display Report

Analysis Info
Analysis Name: D:\Data\user data\ AUG 5\Alkesh Biaasi-AB-SD-1-294.d
Method: tune_low.m
Sample Name: AB-SD-1-294
Comment

Acquisition Date: 8/5/2011 11:57:31 AM
Operator: MEENA SHARMA
Instrument: micrOTOF-Q II 10330

Acquisition Parameter
Source Type: ESI
Ion Polarity: Positive
Set Nebulizer: 0.4 Bar
Focus: Active
Set Capillary: 4500 V
Set Dry Heater: 180 °C
Scan Begin: 50 m/z
Set End Plate Offset: -500 V
Set Dry Gas: 4.0 l/min
Scan End: 1500 m/z
Set Collision Cell RF: 130.0 Vpp
Set Diver Valve: Waste

Bruker Compass DataAnalysis 4.0
printed: 8/5/2011 12:02:56 PM Page 1 of 1
13C NMR (100 MHz, CDCl$_3$) of compound (5l)
1H NMR (400 MHz, CDCl$_3$) of compound (5m)
1H NMR (400 MHz, CDCl$_3$) of compound (5n)
13C NMR (100 MHz, CDCl$_3$) of compound (5n)
1H NMR (400 MHz, CDCl$_3$) of compound (5o)
13C NMR (100 MHz, CDCl$_3$) of compound (5o)
1H NMR (400 MHz, CDCl$_3$) of compound (5p)
13C NMR (100 MHz, CDCl$_3$) of compound (5p)
\(^1\)H NMR (400 MHz, CDCl\(_3\)) of compound (5q)
13C NMR (100 MHz, CDCl$_3$) of compound (5q)
1H NMR (400 MHz, CDCl$_3$) of compound (5r)
\[^{13}C \text{NMR (100 MHz, CDCl}_3\text{)} \text{ of compound (5r)} \]
1H NMR (400 MHz, CDCl$_3$) of compound (5s)
13C NMR (100 MHz, CDCl$_3$) of compound (5s)
1H NMR (400 MHz, CDCl$_3$) of compound (5t)
$\text{13C NMR (100 MHz, CDCl}_3\text{) of compound (5t)}$