A convenient method of facilitating aryl-aryl bond formation reaction in the synthesis of biquinoline and quinoline bearing chromene derivatives

Mathan Sankaran, Kumarasamy Chandraprakash, Chokkalingam Uvarani, Kailasam Natesan Vennila, Devadasan Velmurugan and Palathurai Subramaniam Mohan

School of Chemical Sciences, Bharathiar University, Coimbatore 641046, Tamilnadu, India.

Centre for Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India,

Supplementary materials

Methods and materials

All common reagents and solvents were obtained from commercial suppliers and used without further purification. 1H and 13C NMR spectra were recorded on a Bruker (Advance) 400 as well as 500 MHz instrument in DMSO-d_6 using TMS as internal standard. Chemical shifts are given in parts per million (δ-scale) and the coupling constants are given in Hertz. IR spectra were recorded on a JASCO FT IR instrument (KBr) pellet in case of solids and CHCl$_3$ in case of viscous liquids. Elemental analyses were performed on a Perkin Elmer 2400 Series II Elemental CHNS analyser. Chemical reaction courses were monitored by silica gel (GF254) thin layer chromatography plates. Column chromatography was carried out with silica gel (60-120 mesh). Melting points were measured in open capillaries.

General procedure for the synthesis of biquinoline (3a-j)

To a stirred suspension of 2-aminobenzophenone/ 2-aminoacetophenone 2a-d (1 mmol) in acetic acid (20 mL), appropriate 4-substituted 3-acetylquinolin-2-one 1a-d (1 mmol) was added, followed by the addition of a catalytic amount of H$_2$SO$_4$. The reaction mixture was heated to reflux for 3-4 h. The reaction course was monitored with TLC. After being cooled to room temperature, it was poured into 500 gm of crushed ice; the resulting residue was filtered to afford the desired
product, In exceptional cases it was purified by silica gel column chromatography (hexane+ethyl acetate 8:2 v/v) to afford the target compound.

6'-chloro-4, 4'-diphenyl-2, 3'-biquinolin-2'(1'H)-one (3a)

Pale green solid (85%) mp. 242–245° C; IR (KBr) ν_{max}; 3143.4, 2988.16, 2840.63, 883.23, 824.42 cm⁻¹. ¹H NMR (400 MHz, DMSO-_{d6}) δ 12.43 (s, 1H, Q-NH) 7.93 (t, 1H, J=8.10 Hz, ArH), 7.73 (m, 2H, ArH), 7.62 (dd, 1H, J₁=2.4 Hz, J₂= 6.5 Hz, ArH), 7.45-7.53 (m, 5H, ArH), 7.21-7.34 (m, 8H, ArH), 7.01 (d, 1H, J=2.4 Hz, ArH); ¹³C NMR (100 MHz, DMSO-_{d6}) δ 161.60, 155.48, 149.35, 147.89, 138.34, 137.85, 135.52, 132.98, 131.64, 130.41, 130.13, 129.76, 129.58, 129.47, 128.96, 127.97, 126.83, 125.91, 124.70, 121.79, 118.40, 39.48 Anal. Calcd. for C₃₀H₁₉ClN₂O (458.9) C, 78.51; H, 4.17; N, 6.10. Found C, 78.49; H, 4.22; N, 6.15%.

6'-chloro-6-nitro-4,4'-diphenyl-2,3'-biquinolin-2'(1'H)-one (3b)

Pale green solid (88%) mp. 250-255° C; IR(KBr) ν_{max}; 3641.91, 3452.92, 3335.28, 3148.22, 2994.91, 2834.85, 2355.62, 1904.36, 1764.55, 1646.91, 1480.10, 1448.28, 1376.93, 1261.22, 1054.87, 947.84, 841.77, 766.56, 698.10, 549.61 cm⁻¹; ¹H NMR (400 MHz, DMSO-_{d6}) δ 12.45 (s, 1H, Q-NH), 8.60 (s, 1H, ArH), 8.07 (d, 1H, J=9.3 Hz, ArH), 7.63 (dd, 1H, J₁=2.4 Hz, J₂= 6.5 Hz, ArH), 7.55-7.59 (m, 4H, ArH), 7.40-7.52 (m, 4H, ArH), 7.22-7.35 (m, 6H, ArH), 7.01 (d, 1H, J=2.4 Hz, ArH); ¹³C NMR (100 MHz, DMSO-_{d6}) δ 161.38, 159.96, 149.67, 146.72, 138.41, 136.72, 135.31, 134.32, 133.97, 132.70, 131.84, 130.54, 130.12, 129.94, 129.23, 127.13, 126.90, 124.23, 123.71, 122.73, 121.68, 118.46, 108.67, 39.46; Anal. Calcd. for C₃₀H₁₈ClN₃O₃ (503) C, 71.50; H, 3.60; N, 8.34. Found, C, 71.55; H, 3.56; N, 8.38%.

6,6'-dichloro-4,4'-diphenyl-2,3'-biquinolin-2'(1'H)-one (3c)

Pale yellow solid (84%) mp. 248–252° C; IR(KBr) ν_{max}; 3641.91, 3054.6, 2356.59, 1904.36, 1764.55, 1646.91, 1480.10, 1448.28, 1376.93, 1261.22, 1054.87, 947.84, 841.77, 766.56, 698.10, 549.61 cm⁻¹; ¹H NMR (400 MHz, DMSO-_{d6}) δ 12.41 (s, 1H, Q-NH), 7.92 (d, 1H, J=8.7 Hz, ArH), 7.74 (s, 1H, ArH), 7.63 (dd, 1H, J₁=2.2 Hz, J₂= 6 Hz, ArH), 7.51-7.56 (m, 3H, ArH), 7.48 (d, 1H, J=9.0 Hz, ArH), 7.39 (s, 1H, ArH), 7.23-7.36 (m, 7H, J=8.10, ArH), 6.93 (d, 1H, J=2.4 Hz, ArH),
13C NMR (100 MHz, DMSO-d_6) δ 161.57, 156.34, 149.38, 146.82, 146.67, 138.31, 137.26, 135.48, 133.00, 132.42, 132.34, 131.59, 130.67, 130.00, 129.60, 128.90, 126.62, 126.05, 125.55, 124.44, 121.76, 118.38; Anal. Calcd. for C$_{30}$H$_{18}$Cl$_2$N$_2$O (493) C, 73.03; H, 3.68; N, 5.68; Found, C, 73.05; H, 3.72; N, 5.72%.

6-nitro-4', 4'-diphenyl-2, 3'-biquinolin-2'(1'H)-one (3d)

Off white solid (68%) mp. 244–249 °C; IR(KBr) ν_{max}; 3150.15, 3004.55, 2887.88, 2357.55, 1911.11, 1663.30, 1601.59, 1543.74, 1483.96, 1427.07, 1382.71, 879.38 cm$^{-1}$; 1H NMR (400 MHz, DMSO-d_6) δ 11.99 (s, 1H, Q-NH), 8.30 (s, 1H, ArH), 8.15 (dd, 1H, $J_1=3$ Hz, $J_2=7.0$ Hz, ArH), 7.81–7.89 (m, 4H, ArH), 7.53–7.65 (m, 9H, ArH), 7.23–7.40 (m, 3H, ArH); 13C NMR (100 MHz, DMSO-d_6) δ 204.47, 161.79, 160.37, 157.45, 147.09, 146.35, 144.53, 138.82, 137.43, 133.69, 132.47, 131.53, 130.27, 129.80, 126.47, 125.67, 124.67, 122.94, 120.65, 119.96, 116.30, 93.79, 32.40; Anal. Calcd. For C$_{30}$H$_{19}$N$_3$O$_3$ (469) C, 76.75; H, 4.08; N, 8.95; Found, C, 76.72; H, 4.12; N, 8.91%.

4'-methyl-4-phenyl-2, 3'-biquinolin-2'(1'H)-one (3e)

Pale yellow solid (82%) mp. 240–244° C; IR(KBr) ν_{max}; 3331.43, 3022.87, 2356.59, 1954.50, 1638.23, 1551.45, 1485.88, 1424.17, 1385.60, 1269.90, 968.09, cm$^{-1}$; 1H NMR (400 MHz, DMSO-d_6) δ 12.00 (s, 1H, Q-NH), 8.12 (d, 1H, J=8.4 Hz, ArH), 7.91 (d, 1H, J=8.4 Hz, ArH), 7.79 (q, 2H, ArH), 7.48-7.61 (m, 8H, ArH), 7.40 (d, 1H, J=7.8 Hz, ArH), 7.22 (t, 1H, J=7.50 Hz, ArH), 2.32 (s, 3H, CH$_3$); 13C NMR (100 MHz, DMSO-d_6) δ 161.91, 156.79, 148.71, 146.17, 139.01, 138.09, 131.93, 130.32, 129.44, 127.92, 126.26, 125.69, 124.73, 122.88, 120.70, 116.28, 112.63, 16.78. Anal. Calcd. For C$_{25}$H$_{18}$N$_2$O (362) C, 82.85; H, 5.01; N, 7.73. Found C, 82.81; H, 5.07; N, 7.69%.

4'-methyl-6-nitro-4-phenyl-2, 3'-biquinolin-2'(1'H)-one (3f)

Pale green solid (77%) mp. 252–255° C; IR(KBr) ν_{max}; 3303.46, 2850.27, 2356.59, 1662.34, 1599.66, 1535.06, 1484.92, 1430.92, 1337.39, 745.35, cm$^{-1}$; 1H NMR (400 MHz, DMSO-d_6) δ 12.03 (s, 1H, Q-NH), 8.77 (s, 1H, ArH), 8.53 (dd, 1H, J_1= 2.4 Hz, J_2= 7.0 Hz, ArH), 8.23 (d, 1H, J= 9.3 Hz, ArH), 7.73 (s, 1H, ArH), 7.56-7.67 (m, 6H, ArH), 7.39 (d, 1H, J=8.1 Hz, ArH), 7.28 (t,
1H, J=7.5 Hz, ArH), 2.32 (s, 3H, CH₃); ¹³C NMR (100 MHz, DMSO-d₆) δ 161.65, 160.70, 150.88, 149.74, 146.82, 146.20, 139.07, 136.89, 131.29, 130.23, 126.46, 124.79, 123.07, 120.59, 116.35, 16.98; Anal. Calcd. For C₂₅H₁₇N₃O₃ (407.4) C, 73.70; H, 4.21; N, 10.31 Found, C, 73.74; H, 4.17; N, 10.32%.

6,6'-dinitro-4,4'-diphenyl-2,3'-biquinolin-2'(1'H)-one (3g)
Pale yellow solid (72%) mp. 254–258°C; IR(KBr) vmax ; 3311.18, 2865.7, 1822.4, 1653.66, 1532.17, 1334.5, 1258.32, 1069.33, 897.70, 703.89 cm⁻¹ ¹H NMR (400 MHz, DMSO-d₆) δ 12.88 (s, 1H, Q-NH), 8.63 (d, 1H, J=2.5 Hz, ArH), 8.42-8.45 (m, 2H, ArH), 8.11 (d, 1H, J=9.0 Hz, ArH), 7.98 (d, 1H, J=2.5 Hz, ArH), 7.61-7.65 (m, 5H, ArH), 7.46 (dd, 2H, J₁=1.5 Hz, J₂=8 Hz, ArH), 7.33-7.36 (m, 5H, ArH); ¹³C NMR (100 MHz, DMSO-d₆) δ 161.36, 158.77, 150.02, 149.08, 145.87, 143.61, 142.16, 136.31, 134.45, 132.98, 131.69, 129.88, 129.58, 129.04, 128.77, 125.86, 123.93, 113.33, 119.71, 117.21. Anal. Calcd. For C₃₀H₁₈N₄O₅ (514) C, 70.03; H, 3.53; N, 10.89% Found, C, 69.98.; H, 3.55; N, 10.92%

4-methyl-6'-nitro-4'-phenyl-2,3'-biquinolin-2'(1'H)-one (3h)
Off white solid (76%) mp. 238–243°C; IR(KBr) vmax ; 3309.25, 2830.03, 1817.58, 1658.48, 1559.17, 1339.32, 1068.37, 761.74 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆) δ 12.80 (s, 1H, Q-NH), 8.42 (d, 1H, J=2.0 Hz, ArH), 7.90 (dd, 1H, J₁=2.5 Hz, J₂=17.5 Hz, ArH), 7.81 (d, 1H, J=8.5 Hz, ArH), 7.68 (t, 1H, J=7 Hz, ArH), 7.56-7.62 (m, 5H, ArH), 7.39 (d, 2H, J=7.5 Hz, ArH), 7.29 (d, 1H, J=2.0 Hz, ArH), 2.23 (s, 3H, CH₃); Anal. Calcd. For C₂₅H₁₇N₃O₃ (407) C, 73.70; H, 4.21; N, 10.31; Found, C, 73.74; H, 4.18; N, 10.28%

6'-nitro-4,4'-diphenyl-2,3'-biquinolin-2'(1'H)-one (3i)
White solid (75%) mp. 245–250°C; IR(KBr) vmax ; 3058.55, 2922.59, 1661.37, 1530.24, 1484.92, 1335.46, 1253.5, 838.88, 700.03 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆) δ 12.86 (s, 1H, Q-NH), 8.42 (dd, 1H, J₁=2.0 Hz, J₂=11.5 Hz, ArH), 7.97 (d, 2H, J=2.0 Hz, ArH), 7.75-7.78 (m, 2H, ArH), 7.50-7.64 (m, 6H, ArH), 7.31-7.38 (m, 7H, ArH); ¹³C NMR (100 MHz, DMSO-d₆) δ 162.58, 153.11, 151.81, 150.13, 148.42, 146.51, 145.94, 142.86, 142.54, 142.02, 140.09, 138.53, 137.05, 136.12, 134.55, 133.55, 132.62, 132.07, 131.51, 129.89, 128.96, 127.61, 125.80, 125.41, 124.47,
Anal. Calcd. For C\textsubscript{30}H\textsubscript{19}N\textsubscript{3}O\textsubscript{3} (469) C, 76.75; H, 4.08; N, 8.95 Found, C, 76.70; H, 4.06; N, 8.97%.

6-chloro-6'-nitro-4', 4'-diphenyl-2',3'-biquinolin-2'(1'H)-one (3j)
Green solid (73%) mp. 236–240 °C; IR (KBr) ν_{max}; 3344.93, 3080.73, 1659.45, 1553.13, 1482.99, 1339.32, 1257.36, 837.91, 703.89 cm$^{-1}$; 1H NMR (400 MHz, DMSO-d$_6$) δ 12.85 (s, 1H, Q-NH), 8.22-8.29 (m, 2H, ArH), 8.06 (d, 1H, $\text{J}=$10.00 Hz, ArH), 7.85 (d, 1H, $\text{J}=$2.0 Hz, ArH), 7.68 (dd, 1H, $\text{J}_1=$2.50 Hz, $\text{J}_2=$9.00 Hz, ArH), 7.50-7.59 (m, 4H, ArH),7.34-7.37 (m, 3H, ArH), 7.24-7.28 (m, 2H, ArH), 7.20 (s, 1H, ArH); 13C NMR (100 MHz, DMSO-d$_6$) δ 162.24, 157.71, 151.56, 148.11, 144.05, 142.16, 141.55, 135.13, 133.45, 132.23, 131.10, 129.15, 128.15, 128.26, 124.97, 122.16, 121.31, 119.76, 116.02; Anal. Calcd. For C\textsubscript{30}H\textsubscript{18}ClN\textsubscript{3}O\textsubscript{3} (503) C, 71.50; H, 3.60; N, 8.34; Found, C, 71.45; H, 3.58; N, 8.33%.

General procedure for the synthesis of chromene comprising biquinolines (5a-g)
To a stirred suspension of 2-aminobenzophenone/ 2-aminoacetophenone 2a-d (1 mmol) in acetic acid (20 mL), appropriate 3-acetylquinolin-2-one 4a-b (1 mmol) was added, followed by the addition of a catalytic amount of H$_2$SO$_4$. The reaction mixture was heated to reflux for 3-4 h. The reaction course was monitored with TLC. After being cooled to room temperature, it was poured into 500 gm of crushed ice; the resulting residue was filtered to afford the desired product. In exceptional cases it was purified by silica gel column chromatography (hexane+ethyl acetate 8:2 v/v) to afford the target compound.

3-(6-nitro-4-phenylquinolin-2-yl)-2H-chromen-2-one (5a)
Pale green solid (81%) mp. 225–230° C; IR(KBr) ν_{max}; 3101.94, 1727.91, 1590.02, 1543.74, 1484.92, 1448.28, 1334.5, 1190.83, 1080.91 cm$^{-1}$; 1H NMR (400 MHz, DMSO-d$_6$) δ 9.10 (s, 1H, ArH), 8.73 (d, 1H, $\text{J}=$2.4 Hz, ArH), 8.56 (dd, 1H, $\text{J}_1=$2.4 Hz, $\text{J}_2=$ 7.0 Hz, ArH), 8.46 (s, 1H, ArH), 8.40 (d, 1H, $\text{J}=$ 9.0 Hz, ArH), 8.05 (dd, 1H, $\text{J}_1=$1.5 Hz, $\text{J}_2=$ 6.3 Hz, ArH), 7.64-7.78 (s, 1H, ArH), 7.52 (t, 1H, $\text{J}=$ 8.10 Hz, ArH), 7.46 (d, 1H, $\text{J}=$ 7.20 Hz, ArH); 13C NMR (100 MHz, DMSO-d$_6$) δ 195.15, 168.85, 138.17, 135.12, 135.00, 132.70, 131.25, 130.36, 129.14, 128.05, 125.44, 24.65; Anal. Calcd. For C\textsubscript{24}H\textsubscript{14}N\textsubscript{2}O\textsubscript{4} (394.1) C, 73.09; H, 3.58; N, 7.10; Found. C, 73.15; H, 3.56; N, 7.12%.

5
3-(6-chloro-4-phenylquinolin-2-yl)-7-methoxy-2H-chromen-2-one (5b)
Pale green solid (86%) mp. 216–218° C; IR(KBr) \(\nu_{\text{max}} \); 3063.37, 2938.02, 2842.56, 2362.37, 1715.37, 1616.06, 1535.06, 1503.24, 1362.46, 1246.75, 1187.94, 1118.51, 1024.02, 827.31, 775.24, 701.96, 623.85, 571.79 cm\(^{-1}\); \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta \) 8.29 (s, 1H, ArH), 8.17 (d, 1H, \(J=9.0 \) Hz, ArH), 7.82 (q, 2H, ArH), 7.77 (s, 1H, ArH), 7.57-7.66 (m, 5H, ArH), 7.04 (t, 2H, \(J=8.50 \) Hz, ArH), 7.04 (t, 2H, \(J=8.50 \) Hz, ArH), 3.89 (s, 3H, OCH\(_3\)); \(^13\)C NMR (100 MHz, DMSO-\(d_6\)) \(\delta \) 194.25, 166.05, 138.40, 135.76, 133.83, 132.96, 131.15, 130.67, 129.74, 128.66, 125.50, 55.74; Anal. Calcd. For C\(_{25}\)H\(_{16}\)ClNO\(_3\) (414) C, 72.55; H, 3.90; N, 3.38. Found; C, 72.50; H, 3.93; N, 3.32%.

7-methoxy-3-(4-methylquinolin-2-yl)-2H-chromen-2-one (5c)
White solid (82%) mp. 220–223° C; IR(KBr) \(\nu_{\text{max}} \); 3356.50, 3083.62, 2923.56, 2849.31, 2356.59, 1714.41, 1613.16, 1589.06, 1507.10, 1229.40, 1024.02, 754.03 cm\(^{-1}\). \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta \) 8.22 (s, 1H, ArH), 8.03-8.10 (m, 2H, ArH), 7.86 (d, 1H, \(J=8.7 \) Hz, ArH), 7.77 (t, 1H, \(J=7.2 \) Hz, ArH), 7.62 (t, 1H, \(J=7.20 \) Hz, ArH), 7.05 (d, 1H, \(J=2.1 \) Hz, ArH), 6.99 (dd, 1H, \(J_1=2.4 \) Hz, \(J_2=6.50 \) Hz, ArH), 3.88 (s, 3H, OCH\(_3\)), 2.71 (s, 3H, CH\(_3\)); \(^13\)C NMR (100 MHz, DMSO-\(d_6\)) \(\delta \) 164.05, 160.79, 156.46, 152.82, 148.00, 145.05, 144.27, 131.53, 130.23, 127.86, 127.39, 124.95, 122.35, 113.61, 100.97, 56.66, 19.12; Anal. Calcd. For C\(_{20}\)H\(_{15}\)NO\(_3\) (317) C, 75.70; H, 4.76; N, 4.41; Found, C, 75.67; H, 4.71; N, 4.34%.

3-(4-phenylquinolin-2-yl)-2H-chromen-2-one (5d)
White solid (82%) mp. 218–222° C; IR(KBr) \(\nu_{\text{max}} \); 3641.91, 3059.51, 2355.62, 2152.98, 1608.34, 1535.06, 1449.24, 1409.71, 1186.97, 960.37, 759.81, 701.96, 565.04 cm\(^{-1}\); \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta \) 8.98 (s, 1H, ArH), 8.19 (d, 1H, \(J=8.1 \) Hz, ArH), 8.01 (dd, 1H, \(J_1=1.5 \) Hz, \(J_2=6.30 \) Hz, ArH), 7.90 (d, 2H, \(J=9.0 \) Hz, ArH), 7.73 (t, 1H, \(J=8.7 \) Hz, ArH), 7.55-7.64 (m, 6H, ArH), 7.51 (d, 1H, \(J=8.10 \) Hz, ArH), 7.43 (d, 1H, \(J=7.2 \) Hz, ArH); \(^13\)C NMR (100 MHz, DMSO-\(d_6\)) \(\delta \) 196.03, 168.12, 138.55, 136.76, 135.83, 133.85, 132.97, 131.20, 129.96, 129.22, 125.47, 27.87; Anal. Calcd. For C\(_{24}\)H\(_{15}\)NO\(_2\) (349) C, 82.50; H, 4.33; N, 4.01; Found; C, 82.48; H, 4.30; N, 4.05%.
3-(4-methylquinolin-2-yl)-2H-chromen-2-one (5e)
Off white solid (74%) mp. 223–225° C; IR(KBr) v_{max} ; 3666.98, 3059.51, 2355.62, 1728.87, 1601.59, 1450.21, 1200.47, 748.24 cm^{-1}; ¹H NMR (400 MHz, DMSO-δ) δ 8.71 (s, 1H, Q-ArH), 7.96-8.01 (m, 3H, ArH), 7.82 (d, 1H, J=7.2 Hz, ArH), 7.71 (t, 1H, J=7.50 Hz, ArH), 7.53-7.62 (m, 2H, ArH), 7.33 (t, 2H, J=8.1 Hz, ArH); ¹³C NMR (100 MHz, DMSO-δ) δ 160.39, 154.31, 152.40, 147.94, 145.09, 145.06, 144.32, 143.88, 133.41, 130.27, 129.26, 127.98, 127.54, 126.07, 125.52, 124.87, 122.59, 119.89, 116.69, 19.08; Anal. Calcd. For C_{19}H_{13}NO_{2} (287) C, 79.43; H, 4.56; N, 4.88; Found; C, 79.43; H, 4.56; N, 4.88%.

3-(6-chloro-4-phenylquinolin-2-yl)-2H-chromen-2-one (5f)
Pale yellow solid (76%) mp. 215–220° C; IR(KBr) v_{max} ; 3667.94, 3060.48, 2357.55, 1718.26, 1607.38, 1536.02, 1481.06, 1358.6, 1193.72, 825.38, 566.0 cm^{-1}; ¹H NMR (400 MHz, DMSO-δ) δ 8.91 (s, 1H, Cum-H), 8.15-8.24 (m, 2H, ArH), 7.94 (s, 1H, Q-H), 7.60-7.81 (m, 9H, ArH), 7.42 (t, 2H, J=7.8 Hz, ArH); ¹³C NMR (100 MHz, DMSO-δ) δ 194.18, 169.05, 137.37, 135.76, 134.83, 133.70, 132.96, 132.13, 130.36, 129.74, 129.35, 126.52, 23.74; Anal. Calcd. For C_{24}H_{14}ClNO_{2} (384) C, 75.10; H, 3.68; N, 3.65; Found, C, 75.07; H, 3.73; N, 3.60%.

7-methoxy-3-(4-phenylquinolin-2-yl)-2H-chromen-2-one (5g)
Pale green solid (82%) mp. 216-220 °C; IR(KBr) v_{max} ; 3059.51, 1718.26, 1617.02, 1583.27, 1502.28, 1358.6, 1237.11, 1187.94, 1021.12, 834.06, 703.89 cm^{-1}; ¹H NMR (400 MHz, DMSO-δ) δ 8.99 (s, 1H, C4-H), 8.40 (s, 1H, C_{3}^{1} H), 8.22 (d, 1H, J=8.50 Hz, ArH), 7.97 (d, 1H, J=8.50 Hz, ArH), 7.76 (t, 1H, J=8.00 Hz, ArH), 7.51-7.60 (m, 6H, ArH), 6.95 (d, 1H, J=2.00 Hz, ArH), 6.93 (dd, 1H, J_{1}=2.50 Hz, J_{2}=10.00 Hz, ArH); ¹³C NMR (100 MHz, DMSO-δ) δ 163.46, 160.80, 156.23, 152.16, 148.69, 148.52, 143.82, 138.22, 130.08, 129.76, 129.74, 129.48, 128.53, 128.38, 126.65, 126.26, 125.79, 122.57, 121.81, 113.41, 113.19, 100.31, 55.86; MS Anal. Calcd. For C_{25}H_{17}NO_{3} (379) C, 79.14; H, 4.52; N, 3.69; Found, C, 7.19; H, 4.49; N, 3.71%.
<table>
<thead>
<tr>
<th>S. No</th>
<th>List of Figures</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1H NMR spectrum of 2a</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>1H NMR spectrum of 2b</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>1H NMR spectrum of 3g</td>
<td>11, 12</td>
</tr>
<tr>
<td>5</td>
<td>13C NMR spectrum of 3g</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>Mass spectrum of 3g</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>1H NMR spectrum of 5g</td>
<td>15, 16</td>
</tr>
<tr>
<td>9</td>
<td>13C NMR spectrum of 5g</td>
<td>17</td>
</tr>
<tr>
<td>10</td>
<td>Mass spectrum of 5g</td>
<td>18</td>
</tr>
</tbody>
</table>
1 H NMR spectrum of 3-acetyl-4-phenylquinolin-2(1H)-one (2a)
1H NMR spectrum of 3-acetyl-4-methylquinolin-2(1H)-one (2b)
1H NMR spectrum of 6,6'-dinitro-4,4'-diphenyl-2,3'-biquinolin-2'(1'H)-one (3g)
1H NMR spectrum of 6,6'-dinitro-4,4'-diphenyl-2,3'-biquinolin-2'(1H)-one (3g)
13C NMR Spectrum of 6,6'-dinitro-4,4'-diphenyl-2,3'-biquinolin-2'(1'H)-one (3g)
Chromatogram (All TIC)

Chromatogram (Zoom)

Spectrum

Line#1 R.Time:13.458(Scan#1544)
MassPeaks:77
RawMode:Averaged 10.317-17.517(1167-2031) BasePeak:514.15(16502)
BG Mode:None Group 1 - Event 1

Mass spectrum of 6,6'-diaceto-4,4'-diphenyl-2,3'-biquinolin-2'(1H)-one (3g)
1H NMR spectrum of 7-methoxy-3-(4-phenylquinolin-2-yl)-2H-chromen-2-one (5g)
1H NMR spectrum of 7-methoxy-3-(4-phenylquinolin-2-yl)-2H-chromen-2-one (5g)
13C NMR spectrum of 7-methoxy-3-(4-phenylquinolin-2-yl)-2H-chromen-2-one (5g)