Catalytic Reduction of o/p-Azidonitrobenzenes through *tert* Butoxide Ion Mediated Electron Transfer

James Burnley, Giorgio Carbone and John E. Moses*

School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK

Contents:

S2: General experimental procedures
S3 – S8: Characterisation of compounds listed in Table 2
S9: References
S9 - S19: Copies of 1H and 13C NMR spectra of compounds listed in Table 2
Experimental

The azides were synthesized according to the literature procedure from the corresponding aniline. All reagents were purchased from Sigma Aldrich Inc., Alfa Aesar or Fischer Scientific (including thiazolium 3, CAS: 4568-71-2) and used without further purification. \(^1\)H and \(^{13}\)C-NMR spectra were recorded on a Bruker AV (III) 400, Bruker AV 400, Bruker DPX 400 (400MHz (\(^1\)H) and 100 MHz (\(^{13}\)C)), spectrometers. Chemical shifts are expressed in parts per million (ppm) and the spectra calibrated to residual solvent signals of DMSO (2.54 ppm (\(^1\)H) and 40.5 ppm (\(^{13}\)C)). Coupling constants are given in hertz (Hz) and the following notations indicate the multiplicity of the signals: s (singlet), br s (broad singlet), d (doublet), dd (double doublet), t (triplet), q (quartet), m (multiplet). High Resolution Mass Spectra were recorded on a VG micron Autospec or Bruker microTOF. Fourier Transform Infrared Spectroscopy (FT-IR) spectra were obtained using a Perkin Elmer 1600 series or Bruker Tensor 27 spectrometer. Melting points were recorded using a STUART SMP3 apparatus and are uncorrected. Thin layer chromatography was carried out on Merck pre-coated silica gel plates (60F-254) and visualised using ultra violet light or KMnO\(_4\) solution. THF was freshly distilled from sodium-benzophenone. Where necessary, reactions requiring anhydrous conditions were performed in dry solvents in flame dried or oven-dried apparatus under argon atmosphere.

General procedure for the reduction of azidonitrobenzenes (Table 2)

3

tert

mL) under argon at room temperature. The resulting suspension was stirred for 5 minutes, and then sodium tert-butoxide (23.4 mg, 0.244 mmol) was added in one portion, and the mixture stirred (see table 2). Water (2 mL) was added and the products extracted with EtOAc (2 x 2 mL), the combined organic phase was dried over anhydrous magnesium sulphate, filtered and concentrated in vacuo resulting residue through a short pad of silica (eluting with 50% light petroleum: ethyl acetate) unless otherwise stated.
4-Nitroaniline (2)

Yellow solid (15.0 mg, 88%), \(R_f \) (70:30 petrol-EtOAc) 0.3; mp 145-148 °C (lit., \(^2\) 146-147 °C); IR (FTIR, CHCl\(_3\)) \(\nu_{\text{max}} \) cm\(^{-1}\): 3509 (NH\(_2\)), 3417 (NH\(_2\)), 1624, 1600 1505 (NO\(_2\)), 1335, 1311; \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) 7.96-7.92 (m, 2H), 6.70 (br s, 2H, NH\(_2\)), 6.62-6.58 (m, 2H); \(^{13}\)C NMR (100 MHz, DMSO-\(d_6\)) 155.7 (C), 135.6 (C), 126.4 (2 x CH), 112.4 (2 x CH); HRMS ESI: calcd for C\(_6\)H\(_4\)N\(_2\)NaO\(_2\) [M+Na]\(^+\), 161.0321; found, 161.0322.

(10)

\(J = 8.7, 1.3 \) Hz, 1H), 7.82-7.78 (m, 3H), 7.43 (dd, \(J = 8.7, 1.3 \) Hz, 1H), 7.05-7.01 (m, 1H); \(^{13}\)C NMR (100 MHz, DMSO-\(d_6\)) 146.2 (C), 135.7 (CH), 130.3 (C), 125.3 (CH), 119.1 (CH), 115.4 (CH); HRMS ESI: calcd for C\(_6\)H\(_5\)N\(_2\)O\(_2\) [M+H]\(^+\), 139.0502; found, 139.0490; calcd for C\(_6\)H\(_5\)N\(_2\)NaO\(_2\) [M+Na]\(^+\), 161.0321; found, 161.0328.
Pale yellow solid (21.0 mg, 84%), f (70:30 petrol-EtOAc) 0.5; mp 90-93 °C (lit.,4 92-93 °C); IR (FTIR, CHCl$_3$) ν_{max} cm$^{-1}$: 3535 (NH$_2$), 3434 (NH$_2$), 1635, 1592 (NO$_2$), 1520 (NO$_2$), 1119; 1H NMR (400 MHz, DMSO-d_6) 8.59 (d, $J = 2.7$ Hz, 1H), 8.55 (dd, $J = 9.3$, 2.7 Hz, 1H), 7.55 (br s, 2H), 7.32 (d, $J = 9.3$ Hz, 1H); 13C NMR (100 MHz, DMSO-d_6) 151.8 (C), 135.0 (C), 128.7 (CH), 123.7 ($J = 5.9$ Hz, J

$\text{F}_3\text{N}_2\text{NaO}_2[\text{M+Na}]^+$, 229.0195; found, 229.0195.

Yellow solid (18.0 mg, 88%), f (70:30 petrol-EtOAc) 0.6; mp 125-128 °C (lit.,5 127-129 °C); IR (FTIR, CHCl$_3$) ν_{max} cm$^{-1}$: 3515 (NH$_2$), 3418 (NH$_2$), 1627, 1598 (NO$_2$), 1526 (NO$_2$), 1343; 1H NMR (400 MHz, DMSO-d_6) 8.42 (d, $J = 9.1$ Hz, 1H), 7.46 (d, $J = 2.5$ Hz, 1H), 7.40 (br s, 2H), 7.22 (dd, $J = 9.1$, 2.5 Hz, 1H); 13C NMR (100 MHz, DMSO-d_6) 154.4 (C), 133.7 (C), 129.7 (CH), 124.1 ($J = 32.2$ Hz, CF$_3$), 123.9 (C), 114.4 (CH), 111.7 ($J = 6.6$ Hz, CH); HRMS ESI: calcd for C$_7$H$_9$F$_3$N$_2$NaO$_2[\text{M+Na}]^+$, 229.0195; found, 229.0205.
4-Methoxy-2-nitroaniline (16)
\[\text{N}_2\text{O}_3 [\text{M+H}]^+, 169.0608; \text{found, } 166.0611; \text{calcd for } \text{C}_7\text{H}_8\text{N}_2\text{NaO}_3 [\text{M+Na}]^+, 191.0427; \text{found, } 191.0437. \]

(17)

2-Amino-5-nitrophenyl)(phenyl)methanone (18)

\[\text{NH}_2 \text{O} \text{Me} \text{NO}_2 \]

\[\text{NH}_2 \text{O} \text{NO}_2 \]
\[
^{10} \text{N}_{2} \text{O}_3 [M]^{+}, 242.0691; \text{found, 242.0686.}
\]

\[
Z E 2,3\text{-dihydrothiazol-5-yl) ethanol (19)}
\]

\[
\begin{aligned}
\text{O}_2 \text{N} & \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{S} \\
\end{aligned}
\]

\[
\text{HO} \quad \text{O}_2 \text{N} \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{S} \\
\end{aligned}
\]

\[
\begin{aligned}
\text{1} & \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{S} \\
\end{aligned}
\]

\[
\begin{aligned}
\text{3} & \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{S} \\
\end{aligned}
\]

\[
\text{°C. NaH (30.5 mg, 60% w/w mineral oil, 0.761 mmol) was added to the mixture in one portion. The reaction mixture was allowed to warm to room temperature, at which point a bright red colour appeared. The reaction was stirred at room temperature until complete (TLC, 5 h). The reaction mixture was then poured onto saturated ammonium chloride solution (5 mL) and the products extracted with ethyl acetate (3 x 5 mL). The combined organic extracts were dried over anhydrous magnesium sulfate, filtered and the solvents removed. The resulting residue was finally subjected to flash column chromatography (eluting with ethyl acetate) to deliver the product as a bright red solid (98.0 mg, 81%), f (EtOAc) 0.2; IR (FTIR, CHCl\textsubscript{3}) \nu_{\text{max}} \text{ cm}^{-1}: 3108 (OH), 1520 (NO\textsubscript{2}), 1428 (N=N), 1327, 1134, 1106; ^{1}H \text{ NMR (400 MHz, DMSO-} \text{d}_6) \quad 8.28 (d, J = 8.9 \text{ Hz, 2H}), 7.64 (d, J = 8.9
\]
Hz, 2H), 7.41-7.37 (m, 2H), 7.33-7.30 (m, 1H), 7.26-7.24 (m, 2H), 5.42 (s, 2H), 4.93 (t, \(= 5.7 \) Hz, 1H), 3.59 (app q, \(= 5.7 \) Hz, 2H), 2.76 (t, \(= 5.7 \) Hz, 2H), 2.16 (s, 3H); \(^{13}\)C NMR (100 MHz, DMSO-\(_d_6 \)) 176.8 (C), 155.6 (C), 145.4 (C), 135.8 (C), 133.1 (C), 128.9 (CH), 127.7 (CH), 126.5 (CH), 125.0 (CH), 121.7 (CH), 116.5 (C), 60.5 (CH\(_2\)), 48.6 (CH\(_2\)), 29.7 (CH\(_3\)), 11.2 (CH\(_3\)); HRMS ESI: calcd for C\(_{19}\)H\(_{20}\)N\(_5\)O\(_3\)S [M+H]\(^+\), 398.1281; found, 398.1291; calcd for C\(_{19}\)H\(_{19}\)N\(_5\)NaO\(_3\)S [M+Na]\(^+\), 420.1101; found, 420.1122.
References:

 Tetrahedron 68

 J. Org. Chem. 75

 J. Org. Chem. 26

 J. Org. Chem. 1968, 33

 J. Org. Chem. 63

 J. Am. Chem. Soc. 68

 J. Indian Chem. Soc. 73

 Chem. Commun. 47
Formula: C₆H₆N₂O₂
FW: 138.1240

Acquisition Time (sec): 3.9846
Comment: Slot No. 11 Sample ID jb1184 dry SupervisorID moses Lab Phone No. 13540 UserID j_bur

Date: 11 Oct 2012 12:20:32
Date Stamp: 11 Oct 2012 12:20:32

File Name: 1/128.243.125.107/Public/Moses Group Work/James Burnley/azide reduction paper/NMR SI/2-nitroaniline/proton.esp

Formula: C₆H₆N₂O₂
FW: 138.1240

Acquisition Time (sec): 0.6521
Comment: Slot No. 11 Sample ID jb1184 dry SupervisorID moses Lab Phone No. 13540 UserID j_bur

Date: 11 Oct 2012 12:26:56
Date Stamp: 11 Oct 2012 12:26:56

File Name: 1/128.243.125.107/Public/Moses Group Work/James Burnley/azide reduction paper/NMR SI/2-NITROANILINE/J_BUR.JB1184 DRY/PDATA/1/1R
carbon.esp

Formula: C₆H₆N₂O₂
FW: 138.1240

Acquisition Time (sec): 0.6521
Comment: Slot No. 11 Sample ID jb1184 dry SupervisorID moses Lab Phone No. 13540 UserID j_bur

Date: 11 Oct 2012 12:26:56
Date Stamp: 11 Oct 2012 12:26:56

File Name: 1/128.243.125.107/Public/Moses Group Work/James Burnley/azide reduction paper/NMR SI/2-NITROANILINE/J_BUR.JB1184 DRY/PDATA/1/1R
carbon.esp
Formula: \(\text{C}_7\text{H}_5\text{F}_3\text{N}_2\text{O}_2\)
FW: 206.1220

Acquisition Time (sec): 1.8407

Comment:

Date: 11 Oct 2012 11:57:04
Date Stamp: 11 Oct 2012 11:57:04

File Name: 1/28/243_125.107/Public/Moses Group Work/James Burnley/Azide Reduction paper/NMR/SIA-4-nitro-2-(trifluoromethyl)aniline.J_BUR.JB1239.DRY-FSPNTA.1

Origin: av400
Original Points Count: 16384
Owner: nmruser
Points Count: 32768

Frequency (MHz): 400.13
Solvent: DMSO-d6
Temperature (degree C): 25.160

Number of Transients: 16

Original Points Count: 16384
Receiver Gain: 181.00

Spectrum Offset (Hz): 2365.3582
Sweep Width (Hz): 4789.13

Nucleus: 1H

Spectrum Type: STANDARD
Sweep Width (Hz): 4789.13
Temperature (degree C): 25.160

Proton ESP

Formula: \(\text{C}_7\text{H}_5\text{F}_3\text{N}_2\text{O}_2\)
FW: 206.1220

Acquisition Time (sec): 0.6832

Comment:

Date: 11 Oct 2012 12:01:20
Date Stamp: 11 Oct 2012 12:01:20

File Name: 1/28/243_125.107/Public/Moses Group Work/James Burnley/Azide Reduction paper/NMR/SIA-4-nitro-2-(trifluoromethyl)aniline.J_BUR.JB1239.DRY-FSPNTA.1

Origin: av400
Original Points Count: 16384
Owner: nmruser
Points Count: 32768
Pulse Sequence: zg30
Receiver Gain: 20642.50

SW(cyclical) (Hz): 23980.81
Solvent: DMSO-d6
Temperature (degree C): 25.160

Nucleus: 13C

Spectrum Offset (Hz): 11018.7695

Spectrum Type: STANDARD
Sweep Width (Hz): 23980.08

Carbon ESP

Formula: C₇H₅F₃N₂O₂

Acquisition Time (sec): 3.4210

Comment:

UserID j_bur SampleID jb1240 dry SupervisorID moses Lab Phone No. 13540 Slot Number 4

Date: 11 Oct 2012 12:12:00

Date Stamp: 11 Oct 2012 12:12:00

File Name: 1/28/243.125.107\Public\Moses Group Work\James Burnley\azide reduction paper\NMR SI\4-nitro-3-(trifluoromethyl)aniline\proton.esp

Acquisition Time (sec): 0.6832

Comment:

UserID j_bur SampleID jb1240 dry long carbon SupervisorID moses Lab Phone No. 13540 Slot Number 39

Date: 12 Oct 2012 03:14:24

Date Stamp: 12 Oct 2012 03:14:24

File Name: 1/28/243.125.107\Public\Moses Group Work\James Burnley\azide reduction paper\NMR SI\4-nitro-3-(trifluoromethyl)aniline\carbon.esp
Formula: C₆H₅ClN₂O₂

Acquisition Time (sec) 14.4710
Frequency (MHz) 400.13

Comment

UserID: j_bur SampleID: jb1266 dry SupervisorID: moses Lab Phone No: 13540 Slot Number: 37

Date
11 Oct 2012 12:37:36

Date Stamp
11 Oct 2012 12:37:36

Formula: C₆H₅ClN₂O₂

Acquisition Time (sec) 0.6832
Frequency (MHz) 100.61

Comment

UserID: j_bur SampleID: jb1266 dry SupervisorID: moses Lab Phone No: 13540 Slot Number: 37

Date
11 Oct 2012 12:44:00

Date Stamp
11 Oct 2012 12:44:00

NMR Spectra:

Proton (¹H) spectrum:
- Chemical Shift (ppm): 8.10, 8.09, 7.96, 7.95, 7.94, 7.93, 6.91, 6.85, 6.83
- Origin: av400
- Number of Transients: 16
- Original Points Count: 16384
- Points Count: 32768
- Pulse Sequence: zg30
- Spectrum Offset (Hz): 2197.4238
- Temperature (degree C): 25.16

Carbon (¹³C) spectrum:
- Chemical Shift (ppm): 151.36, 135.88, 125.64, 124.66, 115.48, 113.54
- Origin: av400
- Number of Transients: 16
- Original Points Count: 16384
- Points Count: 32768
- Pulse Sequence: zg30
- Spectrum Offset (Hz): 11018.0381
- Temperature (degree C): 25.16
Formula: \(C_7H_8N_2O_3 \)
FW: 168.1500

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquisition Time (sec)</td>
<td>3.9846</td>
</tr>
<tr>
<td>Comment</td>
<td>Slot No. 42 Sample ID j_b1251 dry SupervisorID moses Lab Phone No. 13540 UserID j_bur</td>
</tr>
<tr>
<td>Date</td>
<td>11 Oct 2012 12:35:28</td>
</tr>
<tr>
<td>Date Stamp</td>
<td>11 Oct 2012 12:35:28</td>
</tr>
<tr>
<td>File Name</td>
<td>1128.243.125.107Publicвшись Group WorkJames Burnley Azide reduction paperNMR SI 2-methoxy-4-nitroaniline proton.esp</td>
</tr>
<tr>
<td>Frequency MHz</td>
<td>400.20</td>
</tr>
<tr>
<td>Nucleus</td>
<td>(^1H)</td>
</tr>
<tr>
<td>Number of Transients</td>
<td>16</td>
</tr>
<tr>
<td>Origin</td>
<td>dpx400</td>
</tr>
<tr>
<td>Original Points Count</td>
<td>32768</td>
</tr>
<tr>
<td>Owner</td>
<td>nmruser</td>
</tr>
<tr>
<td>Points Count</td>
<td>65536</td>
</tr>
<tr>
<td>Pulse Sequence</td>
<td>zg30</td>
</tr>
<tr>
<td>Receiver Gain</td>
<td>287.40</td>
</tr>
<tr>
<td>SW(cyclical) Hz</td>
<td>8223.68</td>
</tr>
<tr>
<td>Solvent</td>
<td>DMSO-d6</td>
</tr>
<tr>
<td>Spectrum Offset (Hz)</td>
<td>2465.4568</td>
</tr>
<tr>
<td>Spectrum Type</td>
<td>STANDARD</td>
</tr>
<tr>
<td>Sweep Width (Hz)</td>
<td>8223.56</td>
</tr>
<tr>
<td>Temperature (degree C)</td>
<td>25.000</td>
</tr>
</tbody>
</table>

Chemical Shift (ppm)

- 7.75
- 7.73
- 7.57
- 6.67
- 6.65
- 6.41
- 3.87

Formula: \(C_7H_8N_2O_3 \)
FW: 168.1500

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquisition Time (sec)</td>
<td>0.6521</td>
</tr>
<tr>
<td>Comment</td>
<td>Slot No. 42 Sample ID j_b1251 dry SupervisorID moses Lab Phone No. 13540 UserID j_bur</td>
</tr>
<tr>
<td>Date</td>
<td>11 Oct 2012 12:39:44</td>
</tr>
<tr>
<td>Date Stamp</td>
<td>11 Oct 2012 12:39:44</td>
</tr>
<tr>
<td>File Name</td>
<td>1128.243.125.107Publicически Group WorkJames BurnleyAzide reduction paperNMR SI 2-methoxy-4-nitroaniline carbon.esp</td>
</tr>
<tr>
<td>Frequency MHz</td>
<td>100.63</td>
</tr>
<tr>
<td>Nucleus</td>
<td>(^{13}C)</td>
</tr>
<tr>
<td>Number of Transients</td>
<td>128</td>
</tr>
<tr>
<td>Origin</td>
<td>dpx400</td>
</tr>
<tr>
<td>Original Points Count</td>
<td>16384</td>
</tr>
<tr>
<td>Owner</td>
<td>nmruser</td>
</tr>
<tr>
<td>Points Count</td>
<td>32768</td>
</tr>
<tr>
<td>Pulse Sequence</td>
<td>zgpg30</td>
</tr>
<tr>
<td>Receiver Gain</td>
<td>4597.60</td>
</tr>
<tr>
<td>SW(cyclical) Hz</td>
<td>25125.63</td>
</tr>
<tr>
<td>Solvent</td>
<td>DMSO-d6</td>
</tr>
<tr>
<td>Spectrum Offset (Hz)</td>
<td>11019.1025</td>
</tr>
<tr>
<td>Spectrum Type</td>
<td>STANDARD</td>
</tr>
<tr>
<td>Sweep Width (Hz)</td>
<td>25124.86</td>
</tr>
<tr>
<td>Temperature (degree C)</td>
<td>25.000</td>
</tr>
</tbody>
</table>

Chemical Shift (ppm)

- 146.01
- 144.50
- 135.53
- 119.67
- 110.82
- 105.57
- 55.69

Formula: \(C_7H_8N_2O_3 \)
FW: 168.1500

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquisition Time (sec)</td>
<td>1.228</td>
</tr>
<tr>
<td>Comment</td>
<td>Slot No. 42 Sample ID j_b1251 dry SupervisorID moses Lab Phone No. 13540 UserID j_bur</td>
</tr>
<tr>
<td>Date</td>
<td>11 Oct 2012 12:39:44</td>
</tr>
<tr>
<td>Date Stamp</td>
<td>11 Oct 2012 12:39:44</td>
</tr>
<tr>
<td>File Name</td>
<td>1128.243.125.107Publicически Group WorkJames BurnleyAzide reduction paperNMR SI 2-methoxy-4-nitroaniline carbon.esp</td>
</tr>
<tr>
<td>Frequency MHz</td>
<td>100.63</td>
</tr>
<tr>
<td>Nucleus</td>
<td>(^{13}C)</td>
</tr>
<tr>
<td>Number of Transients</td>
<td>128</td>
</tr>
<tr>
<td>Origin</td>
<td>dpx400</td>
</tr>
<tr>
<td>Original Points Count</td>
<td>16384</td>
</tr>
<tr>
<td>Owner</td>
<td>nmruser</td>
</tr>
<tr>
<td>Points Count</td>
<td>32768</td>
</tr>
<tr>
<td>Pulse Sequence</td>
<td>zgpg30</td>
</tr>
<tr>
<td>Receiver Gain</td>
<td>4597.60</td>
</tr>
<tr>
<td>SW(cyclical) Hz</td>
<td>25125.63</td>
</tr>
<tr>
<td>Solvent</td>
<td>DMSO-d6</td>
</tr>
<tr>
<td>Spectrum Offset (Hz)</td>
<td>11019.1025</td>
</tr>
<tr>
<td>Spectrum Type</td>
<td>STANDARD</td>
</tr>
<tr>
<td>Sweep Width (Hz)</td>
<td>25124.86</td>
</tr>
<tr>
<td>Temperature (degree C)</td>
<td>25.000</td>
</tr>
</tbody>
</table>
Proton Spectrum

<table>
<thead>
<tr>
<th>Chemical Shift (ppm)</th>
<th>Normalized Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.5</td>
<td>7.36</td>
</tr>
<tr>
<td>10.0</td>
<td>7.35</td>
</tr>
<tr>
<td>9.5</td>
<td>7.25</td>
</tr>
<tr>
<td>9.0</td>
<td>7.16</td>
</tr>
<tr>
<td>8.5</td>
<td>7.15</td>
</tr>
<tr>
<td>8.0</td>
<td>7.14</td>
</tr>
<tr>
<td>7.5</td>
<td>7.13</td>
</tr>
<tr>
<td>7.0</td>
<td>7.00</td>
</tr>
<tr>
<td>6.5</td>
<td>6.98</td>
</tr>
<tr>
<td>6.0</td>
<td>3.71</td>
</tr>
</tbody>
</table>

Carbon Spectrum

<table>
<thead>
<tr>
<th>Chemical Shift (ppm)</th>
<th>Chemical Shift (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>192</td>
<td>184</td>
</tr>
<tr>
<td>176</td>
<td>168</td>
</tr>
<tr>
<td>160</td>
<td>152</td>
</tr>
<tr>
<td>144</td>
<td>136</td>
</tr>
<tr>
<td>128</td>
<td>120</td>
</tr>
<tr>
<td>112</td>
<td>104</td>
</tr>
<tr>
<td>96</td>
<td>88</td>
</tr>
<tr>
<td>80</td>
<td>72</td>
</tr>
<tr>
<td>64</td>
<td>56</td>
</tr>
<tr>
<td>48</td>
<td>40</td>
</tr>
<tr>
<td>32</td>
<td>24</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

12/10/2012 10:28:58

UserID: j_bur **SampleID:** jb1267 dry **SupervisorID:** moses **Lab Phone No.:** 13540 **Slot Number:** 38

File Name: R:\MOSES GROUP WORK\JAMES BURNLEY\AZIDE REDUCTION PAPER\NMR SI\4-METHOXY-2-NITROANILINE\PROTON.ESP

Acquisition Time (sec): 3.4210
Comment:

11 Oct 2012 12:52:32

UserID: j_bur **SampleID:** jb1267 dry **SupervisorID:** moses **Lab Phone No.:** 13540 **Slot Number:** 38

File Name: R:\MOSES GROUP WORK\JAMES BURNLEY\AZIDE REDUCTION PAPER\NMR SI\4-METHOXY-2-NITROANILINE\CARBON.ESP

Acquisition Time (sec): 0.6832
Comment: